Neurosymbolic AI

David Cox, Ph.D. IBM Director, MIT-IBM Watson AI Lab IBM Research

> MIT-IBM WATSON AI LAB

"Artificial Intelligence"

The evolution of AI

Narrow Al

Single task, single domain Superhuman accuracy and speed for certain tasks

Broad Al

Multi-task, multi-domain Multi-modal Distributed AI Explainable

General Al

Cross-domain learning and reasoning Broad autonomy

The evolution of AI

Narrow Al

Single task, single domain Superhuman accuracy and speed for certain tasks

Broad Al

Multi-task, multi-domain Multi-modal Distributed AI Explainable

General Al

Cross-domain learning and reasoning Broad autonomy

Technology

Stephen Hawking warns artificial intelligence could end mankind

By Rory Cellan-Jones Technology correspondent

③ 2 December 2014 Technology ₽

The evolution of AI

Narrow Al

Single task, single domain Superhuman accuracy and speed for certain tasks

Broad Al

Multi-task, multi-domain Multi-modal Distributed AI Explainable

General Al

Cross-domain learning and reasoning Broad autonomy

The path to a "Broad AI" toolbox

So what's "narrow" about today's AI toolbox?

Forbes / Tech

DEC 29, 2014 @ 11:37 AM 115,776 @

Sell In May & Walk Away: 6 Stocks to Dump

Tech 2015: Deep Learning And Machine Intelligence Will Eat The World

a sector dialecter and evaluation actions and the sector

Anthony Wing Kosner, CONTRIBUTOR

Quantum of Content and innovations in user experience FULL BIO \checkmark

Opinions expressed by Forbes Contributors are their own.

man in black shirt is playing guitar.

construction worker in orange safety vest is working on road.

Karpathy and Li, 2015

Brock et al. 2018

Gatys et al. 2015

"Teddy Bear"

Meret Oppenheim, Le Déjeuner en fourrure

Wang et al. 2018

man in black shirt is playing guitar.

construction worker in orange safety vest is working on road.

Karpathy and Li, 2015

a man riding a motorcycle on a beach

Lake, Ullman, Tenenbaum & Gershman, 2016

IM GENET

What's this?

IM GENET

ObjectNet

Boris Katz MIT

Andrei Barbu MIT

Dan Gutfreund IBM

#MITIBM #AI

MIT-IBM Watson AI Lab

ObjectNet

- ~50K images
 - ~300 object classes
 - 4 different room types

#MITIBM #AI

Testing ImageNet-trained models on ObjectNet

#MITIBM #AI

Chen et al. 2018

Original Top-3 inferred captions:

- 1. A red stop sign sitting on the side of a road.
- 2. A stop sign on the corner of a street.
- 3. A red stop sign sitting on the side of a street.

Pin-yu Chen IBM

Adversarial Top-3 captions:

- 1. A brown teddy bear laying on top of a bed.
- 2. A brown teddy bear sitting on top of a bed.
- 3. A large brown teddy bear laying on top of a bed.

How many blocks are on the right of the three-level tower?

Will the block tower fall if the top block is removed?

Are there more trees than animals?

What is the shape of the object closest to the large cylinder?

Neural Networks / Deep Learning

Reproduced from Minksy, 1991

MIT-IBM Watson AI Lab

Neural-symbolic AI

Disentangling reasoning from vision and language understanding

Chuang Gan

Jiajun Wu

Joshua Tenenbaum

Question: Are there an equal number of large things and metal spheres?

Program: equal_number(count(filter_size(S
cene, Large)),
count(filter_material(filter_shape(Scene,
Sphere), Metal)))

Answer: Yes

NMN [Andreas et al., 2016] IEP [Johnson et al., 2017] FiLM [Perez et al., 2018], MAC [Hudson & Manning, 2018] Stack-NMN [Hu et al., 2018] TbD [Mascharka et al. 2018]

NMN [Andreas et al., 2016] IEP [Johnson et al., 2017] FiLM [Perez et al., 2018], MAC [Hudson & Manning, 2018] Stack-NMN [Hu et al., 2018] TbD [Mascharka et al. 2018]

NMN [Andreas et al., 2016] IEP [Johnson et al., 2017] FiLM [Perez et al., 2018], MAC [Hudson & Manning, 2018] Stack-NMN [Hu et al., 2018] TbD [Mascharka et al. 2018]

Question: Are there an equal number of large things and metal spheres?

Question: Are there an equal number of large things and metal spheres?

Question: Are there an equal number of *large things* and metal spheres?

Question: Are there an equal number of large things and **metal spheres**?

Question: Are there an **equal number** of large things and metal spheres?

Visual Perception

Question Understanding

Question: Are there an equal number of large things and metal spheres?

Language

Q: What's the <u>shape</u> of the **red** object?

Vision

Language

Q: What's the <u>shape</u> of the **red** object?

	Scono				
1	Parsing	ID	Color	Shape	Material
		1	Green	Cube	Metal
		2	Red	Sphere	Rubber
Language Q: What's the <u>shape</u> of the <u>red</u> object?	Semantic Parsing		Filt Querv	er(<mark>Red</mark>) ♥ V(Shape)	
		۱ <u> </u>	Pro	ogram	:

	Scene Parsing	ID	Color	Shape	Material	
		1	Green	Cube	Metal	<u> </u>
		2	Red	Sphere	Rubber	
						Symbolic Reasoning
Q: What's the <u>shape</u> of the <u>red</u> object?	Semantic Parsing		Filt Query	er(<mark>Red</mark>) ♥ y(Shape	 	
		_	Pro	ogram		

	Scene	ID	Color	Shape	Material	
		1	Green	Cube	Metal	
		2	Red	Sphere	Rubber	
						Symbolic
Language	Comonstin					Reasoning
Q: What's the <u>shape</u> of the red object?	Parsing		Filt	er(<mark>Red</mark>) ♥		
		1	Query	y(Shape))	Sphere
		'_	Pro			

Advantage 1: High Accuracy

Accuracy (%)	
92.6	
95.5	
96.9	
97.6	
98.9	
99.1	
99.8	Effectively perfect!
	Accuracy (%) 92.6 95.5 96.9 97.6 98.9 98.9 99.1

[Yi et al. NeurIPS 2018, Johnson et al. ICCV 2017, Santoro et al. NIPS 2017, Perez et al. AAAI 2018, Hudson et al. ICLR 2018, Mascharka et al. CVPR 2018]

Advantage 2: Data Efficiency

High accuracy when trained with just 1% the of the data that other methods require

[Yi et al. NeurIPS 2018]

Advantage 3: Transparency and Interpretability

Question: Are there more yellow matte things that are right of the gray ball than cyan metallic objects?

scene
filter_cyan
filter_metal
count
...(4 modules)
scene
filter_yellow
filter_rubber
count
greater_than

Answer: no

[Yi et al. NeurIPS 2018, Johnson et al. ICCV 2017]

ICLR 2019: Neurosymbolic Concept Learner: Properties predefined, can learn new values autonomously

> NeurIPS 2019: Neurosymbolic Metaconcept Learner: Autonomously learns new concepts

> > ICML 2020 (target submission): Real world images

less predefined, more autonomous \rightarrow

Reproduced from Minksy, 1991

Meta-concept Learning

Han et al. NeurIPS 2019

	Visual reaso	ning questions	+ Metaconcept questions		
	color: red	Q: Is there any red cube ? A: Yes.	Q: Is red a same kind of concept as green? A: Yes.		
	color: green	Q: Is there any green block ? A: Yes	Q: Is cube a synonym of block? A: Yes.		
(Johnson et a	/R al. 2017)	1			
Loridoo	Gull	Q: Is there any Ivory Gull ? A: Yes. Q: Is there any Laridae ? A: Yes.	Q: Is Laridae a hypernym of Ivory gull? A: Yes.		
CUB (Wah et al. 20	Black Tern	Q: Is there any Black Tern?A: Yes.Q: Is there any Laridae?A: Yes.			

Augmenting VQA with Metaconcepts

	Visual reaso	ning questions	+ Metaconcept questions		
color: red		Q: Is there any red cube ? A: Yes.	Q: Is red a same kind of concept as green? A: Yes.		
	color: green	Q: Is there any green block ? A: Yes	Q: Is cube a synonym of block? A: Yes.		
CLEV (Johnson et al	R I. 2017)				
Loridoo	Ivory Gull	Q: Is there any Ivory Gull ? A: Yes. Q: Is there any Laridae ? A: Yes.	Q: Is Laridae a hypernym of Ivory gull? A: Yes.		
CUB (Wah et al. 20	Black Tern	Q: Is there any Black Tern?A: Yes.Q: Is there any Laridae?A: Yes.			

Program Execution Animated

Visual reasoning questions

Generalization

Metaconcept Generalization

Q: Is there any *airplane*? A: Yes

Q: Is there any *kid*? A: Yes Q: Is airplane a *synonym* of plane? A: Yes

Q: Is there any *plane*? A: Yes

- Q: Is there any *child*? A: Yes
- Q: Is kid a *synonym* of child? A: Yes **Testing: metaconcepts on unseen pairs of concepts**

Training

Generalization

Metaconcept Generalization: Results

Q: Is there any *airplane*? A: Yes

Q: Is there any *plane*? A: Yes

Q: Is there any <i>child</i> ?	
A: Yes	

Q: Is there any *kid*?

A: Yes

Q: Is airplane a *synonym* of plane? A: Yes O: Is kid a *synonym* of

Testing
A: Yes
child?
Q. 15 Kld a Synonym C

Training

						resting	
		Q.Type	GRU (Lang. Only) [Cho et al., 2014]	GRU-CNN [Zhou et al., 2015]	BERT (question ; concept) [Jacob Devlin, 2018]	NS-CL [Mao et al. 2019]	VCML
CLEVR	Synonym Same-kind	50.0 50.0	$66.3_{\pm 1.4}$ $64.7_{\pm 5.1}$	${}^{60.9_{\pm 10.6}}_{61.5_{\pm 6.6}}$	$76.2_{\pm 10.2}$; $80.2_{\pm 16.1}$ $75.4_{\pm 5.4}$; $80.1_{\pm 10.0}$	$\frac{100.0_{\pm 0.0}}{92.3_{\pm 4.9}}$	${\begin{array}{*{20}c} 100.0_{\pm 0.0}\\ 99.3_{\pm 1.0}\end{array}}$
GQA	Synonym Same-kind	50.0 50.0	$80.8_{\pm 1.0}$ $56.3_{\pm 2.3}$	$76.2_{\pm 0.8}$ $57.3_{\pm 5.3}$	$76.2_{\pm 2.4}$; $83.1_{\pm 1.5}$ $59.5_{\pm 2.7}$; $68.2_{\pm 4.0}$	$81.2_{\pm 2.8}$ $66.8_{\pm 4.1}$	$\begin{array}{c} 91.1_{\pm 1.7} \\ 69.1_{\pm 1.7} \end{array}$
CUB	Hypernym Meronym	50.0 50.0	$74.3_{\pm 5.2}$ $80.1_{\pm 5.9}$	$76.7_{\pm 8.8} \\ 78.1_{\pm 4.8}$	$75.6_{\pm 1.2}$; $61.7_{\pm 10.3}$ $63.1_{\pm 3.2}$; $72.9_{\pm 9.9}$	$80.1_{\pm 7.3}$ 97.7 $_{\pm 1.1}$	$\begin{array}{c} {\bf 94.8}_{\pm {\bf 1.3}}\\ {\bf 92.5}_{\pm {\bf 1.0}}\end{array}$

CLEVERER: Collision Events for Video REpresentation and Reasoning

Descriptive

Q: What is the material of the last object to collide with the cyan cylinder?

A: Metal

Chuang Gan w/ Kevin Xi, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba & Josh Tenenbaum

• Explanatory

Q: What is responsible for the collision between the rubber and metal cylinder?

A. The presence of the yellow sphereB. The collision between the rubber cylinder and the red rubber sphere

Counterfactual

Q: What will happen without the cyan cylinder?

A. The red rubber sphere and the metal sphere collideB. The red rubber sphere and the gray object collide

Looking Ahead

How many employees have over 10 years experience but have moved location in the last year?

What factors might contribute to better output from Factory A vs. Factory B?

Why is our database down?

Neurosymbolic Generative Models

(a) Target

(b) β -TCVAE (c) DS-VAE with (d) DS-VAE perturbed Z

Srivastava et al. 2020 (submitted)

Neurosymbolic Safe ML/RL

Fulton et al AAAI 2018

Neurosymbolic Code Optimization

Neurosymbolic NLU

Wilcox et al. NAACL 2019

Neurosymbolic Machine Common Sense

Smith et al. NeurIPS 2019

Neurosymbolic Planning

Asai et al. AAAI 2018

Shi et al. ICLR 2019

Inducing Behavioral Insight

Inferring flexible behavioral plans/policies from temporal observation data

Julie Shah MIT

Christian Muise IBM

(:action pickup

:parameters (?b1 ?b2 - block)

```
:effect (and (not (hand-clear))
(not (on ?b1 ?b2))
(holding ?b1))
```

Task: Induce the action theory of an environment through observations

LatPlan

Mixing symbolic planning with neural networks

Masataro Asai IBM

LatPlan

Mixing symbolic planning with neural networks

Masataro Asai IBM

When	
$Empty(x, y_{old})$	\wedge
$at(x, y_{new}, p)$	\wedge
$up(y_{new}, y_{old});$	
then	
$\neg Empty(x, y_{old})$	\wedge
$Empty(x, y_{new})$) ^ (
$\neg at(x, y_{new}, p)$	\wedge

 $at(x, y_{old}, p)$

;; Translates to a PDDL model below:

(:action slide-up ... :precondition (and (empty ?x ?y-old) (at ?x ?y-new ?p) ...) :effects (and (not (empty ?x ?y-old)) (empty ?x ?y-new) (not (at ?x ?y-new ?p)) (at ?x ?y-old ?p)))

NEURAL NETWORKS

(:action pickup

:parameters (?b1 ?b2 - block)

:precondition (and (on ?b1 ?b2) (hand-clear))

SYMBOLIC AI

http://tylervigen.com/spurious-correlations

