

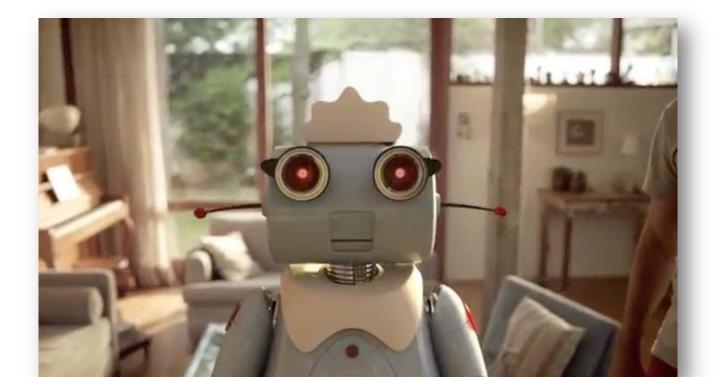
Animesh Garg

Vacuuming

Sweeping/Mopping

Cooking

Laundry



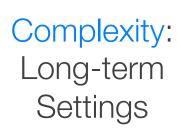
Vacuuming

Sweeping/Mopping

Cooking

Laundry

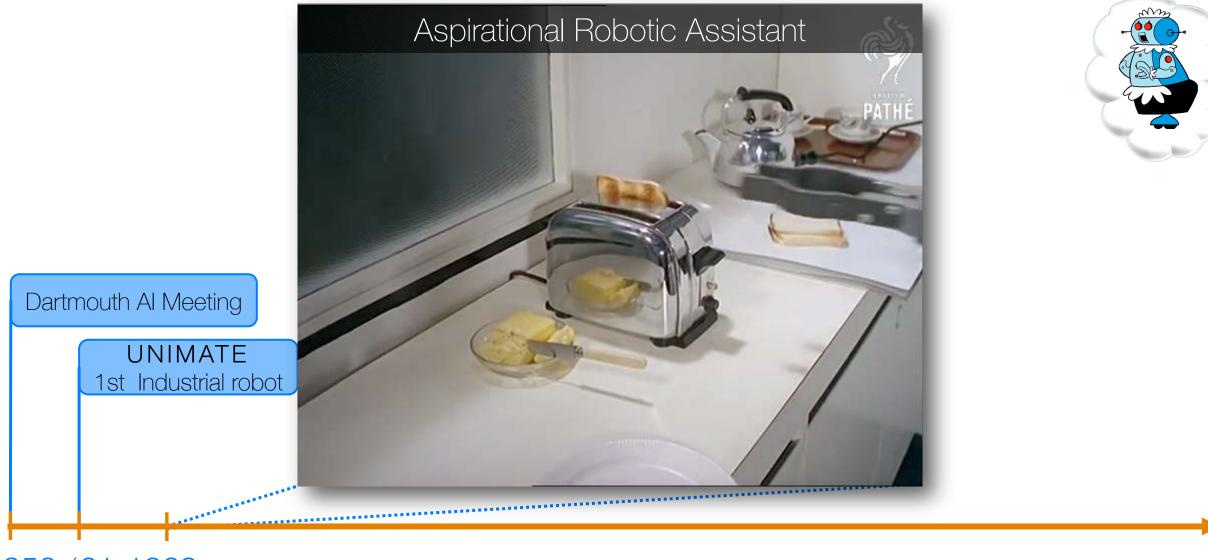
Diversity: New Scenes, Tools,...



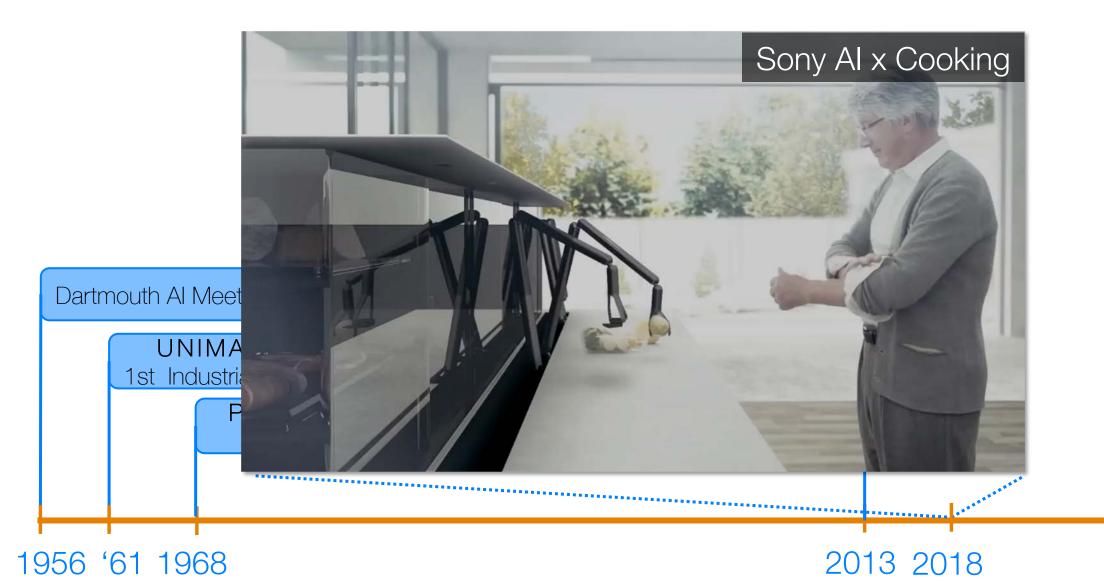
Vision: Build Intelligent Robotic Companions towards Human Enrichment and Augmentation

1956 Dartmouth AI Project

1956

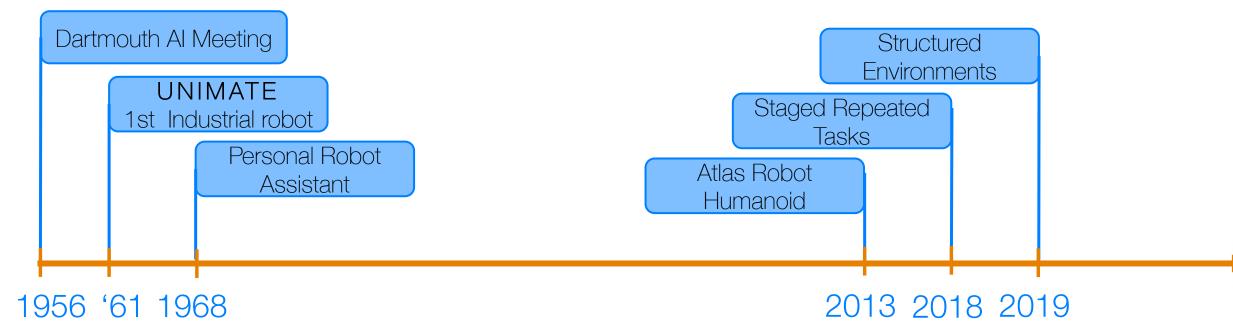


1956 '61 1968

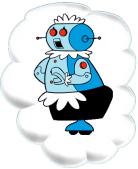


Then

How to Generalize to Unstructured Scenarios?



How to Generalize to Unstructured Scenarios?



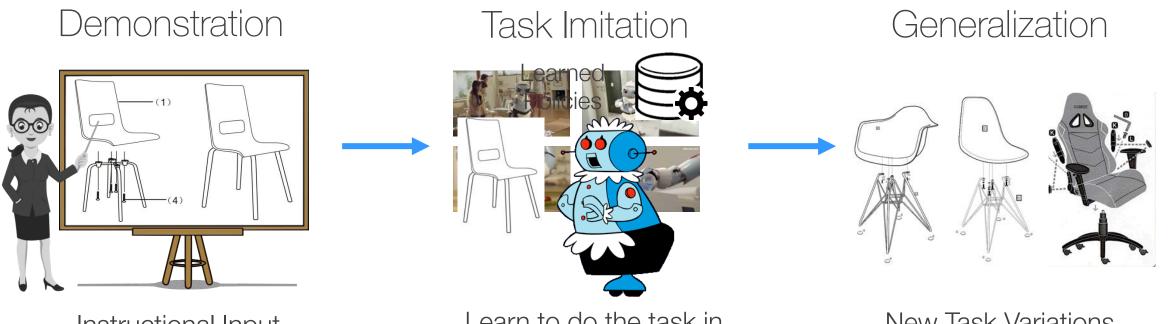
Then

Manufacturing/Retail

Personal/Service

Healthcare/Medicine

Generalizable Autonomy in Robot Manipulation Vision: Build Intelligent Robotic Companions Approach: Learning with Structured Inductive Bias and Priors

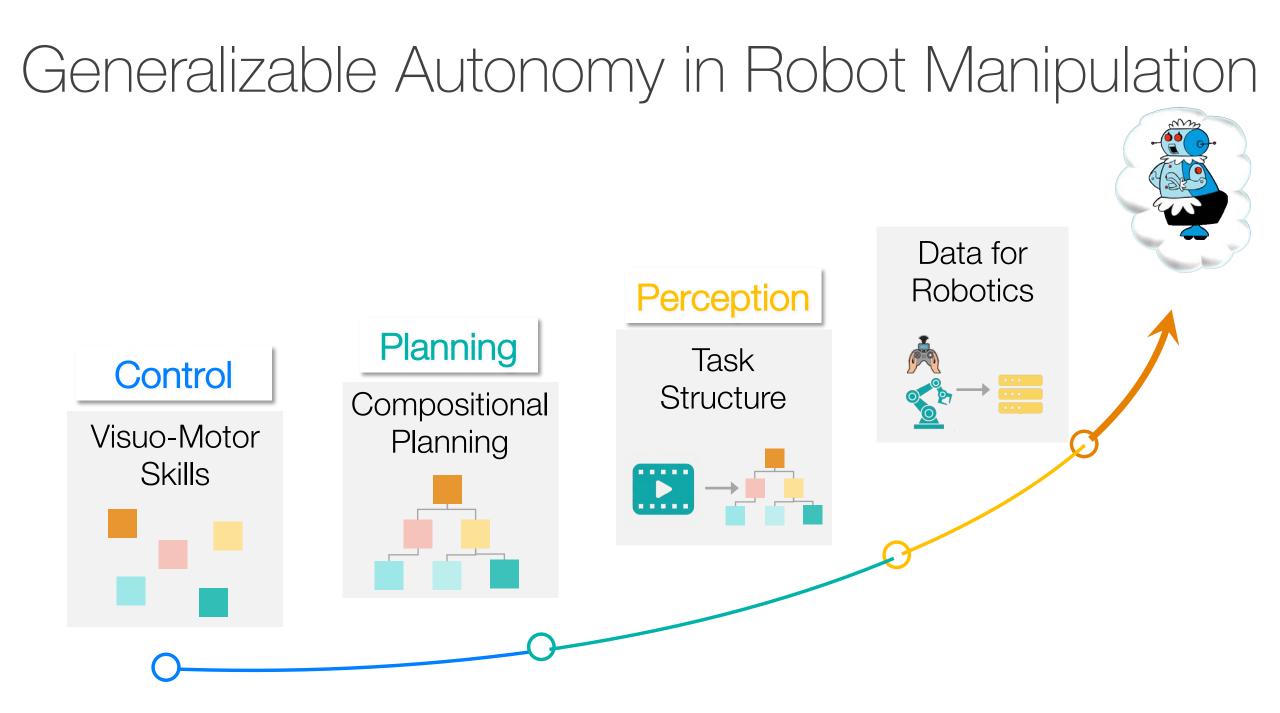


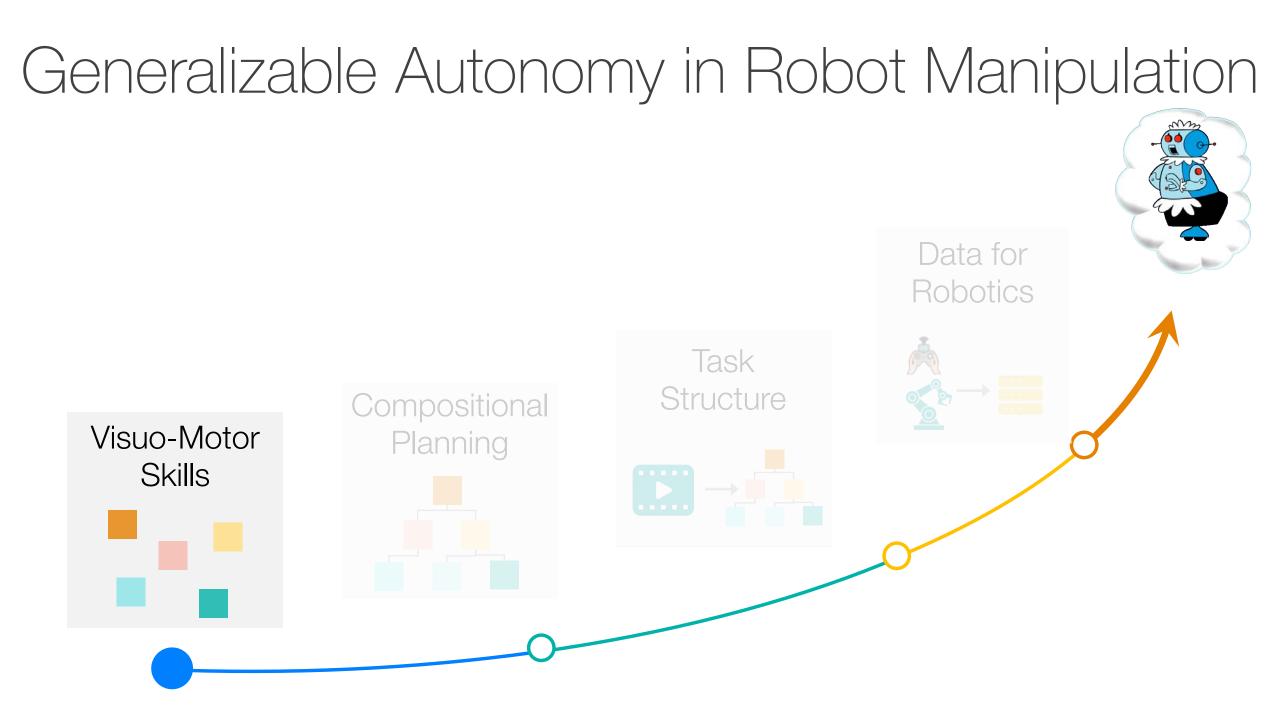
Instructional Input (Teleoperation, Video, Language) Learn to do the task in Same Environment New Task Variations in Novel Environments

Layers of Imitation

Task Specification

Cheng et al. Sci.Rob. 2019





Visuo-Motor Skills

Challenge: Algorithmic frameworks to learn a diversity of skills

Approach: Close the Visuo-Motor Loop with Learning based Control

Vacuuming

Sweeping/Mopping

Cooking

Visuo-Motor Skills: Generalization

Cleaning

Hard Stains – Push Harder?

Skills: Surface Wiping

Different Surfaces – Be Gentle?

Generalization

Visuo-Motor Skills: Current Paradigm

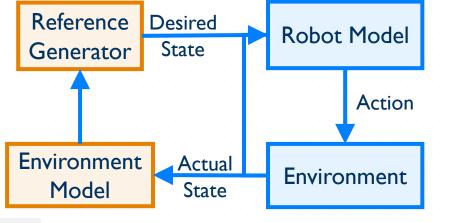
Model Based Task (Operational) Space Control

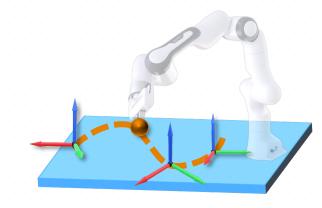
Actual State: Image, Force, Joint Enc. Desired State: x_d Robot Model Parameters: *M*, *J* Action: τ

Robot Model

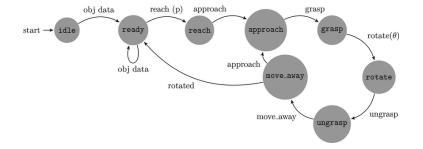
$$\begin{split} \ddot{x}_{ref} &= K_p(x_d - x) + K_v(\dot{x}_d - \dot{x}) + \ddot{x}_d \\ M(q, \dot{q}) + C(q, \dot{q}) + G(q) + \varepsilon(q, \dot{q}) = \tau \\ \tau &= J^T (JM^{-1}J^T)^{-1}(\ddot{x}_{ref} - \dot{J}\dot{q} + JM^{-1}F) \end{split}$$

+ Leverages Robot Model+ Compliant Control





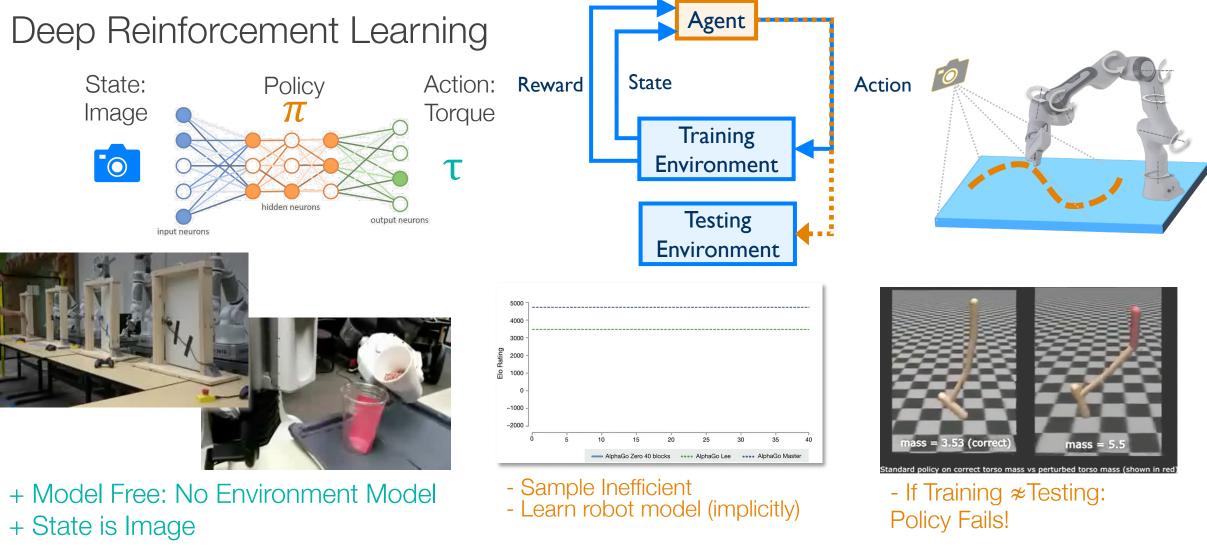
Environment Model + Reference Generator



- Needs Environment (Task) Model

Task Dependent StateExplicit State Estimation

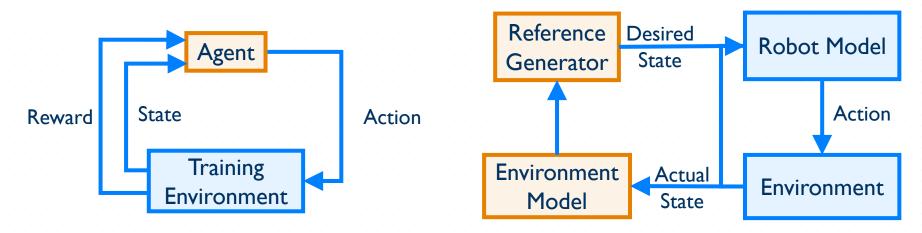
Visuo-Motor Skills: Current Paradigm

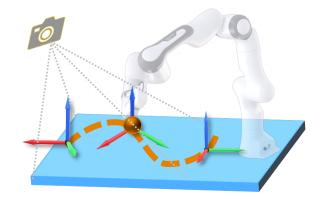


[Agrawal et al., '16], [Levine et al., '16], [Peng et al., '17], [Gu et al., '16], [Chebotar et al., '17], [Yahya et al., '16], [James et al., '17], [Popov et al., '17]

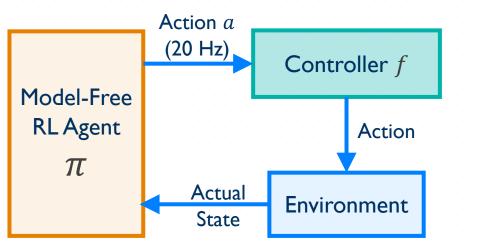
Visuo-Motor Skills: Our Approach

RL with Variable Impedance Task-Space



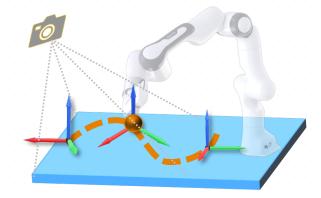


Visuo-Motor Skills: Our Approach

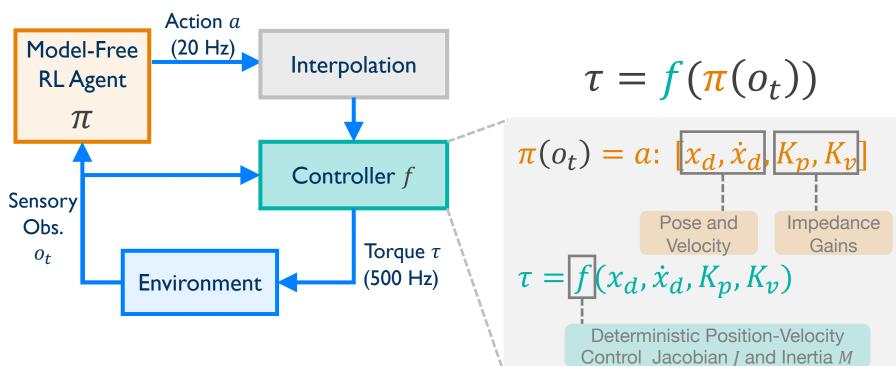


RL with Variable Impedance Task-Space

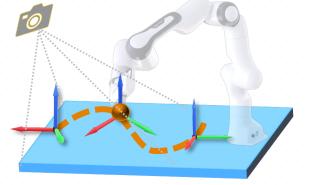
Reference Generator (learned) $\tau = f(\pi(o_t))$ **Robot Model**



Visuo-Motor Skills: Our Approach



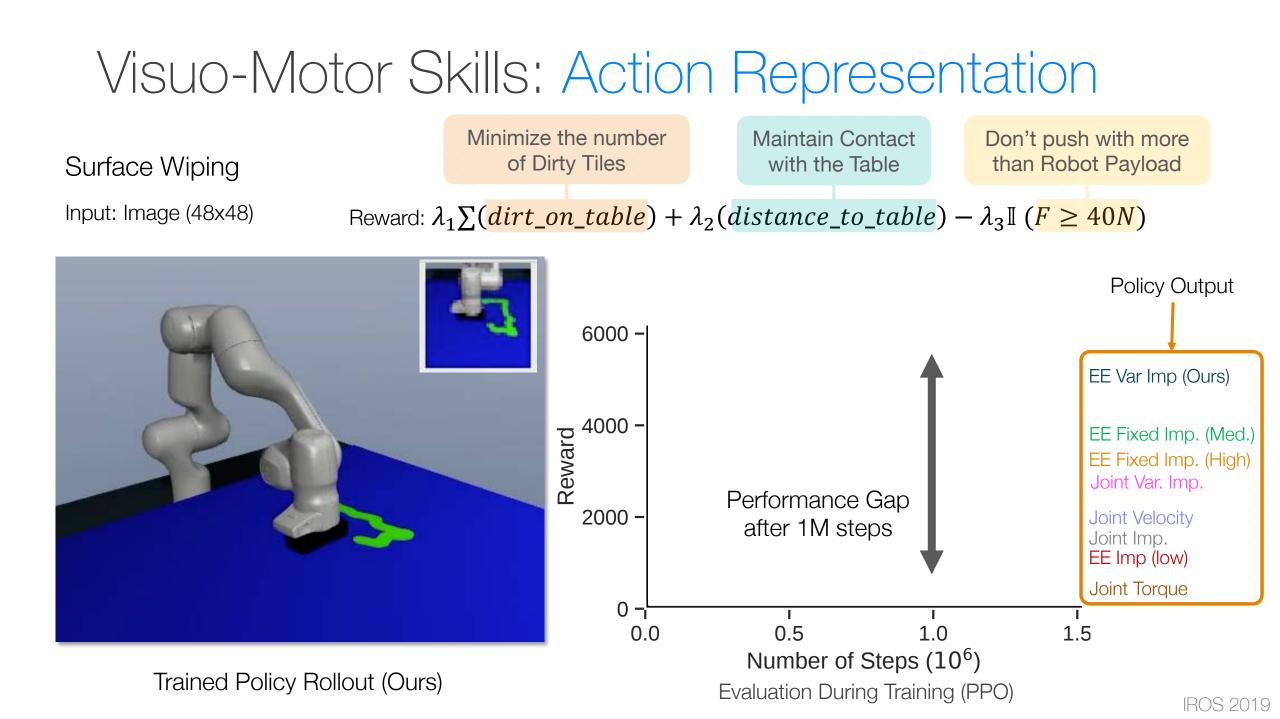
RL with Variable Impedance Task-Space



+ Model Free: No Environment Model+ State is Image

+ Leverages Robot Model+ Compliant Control

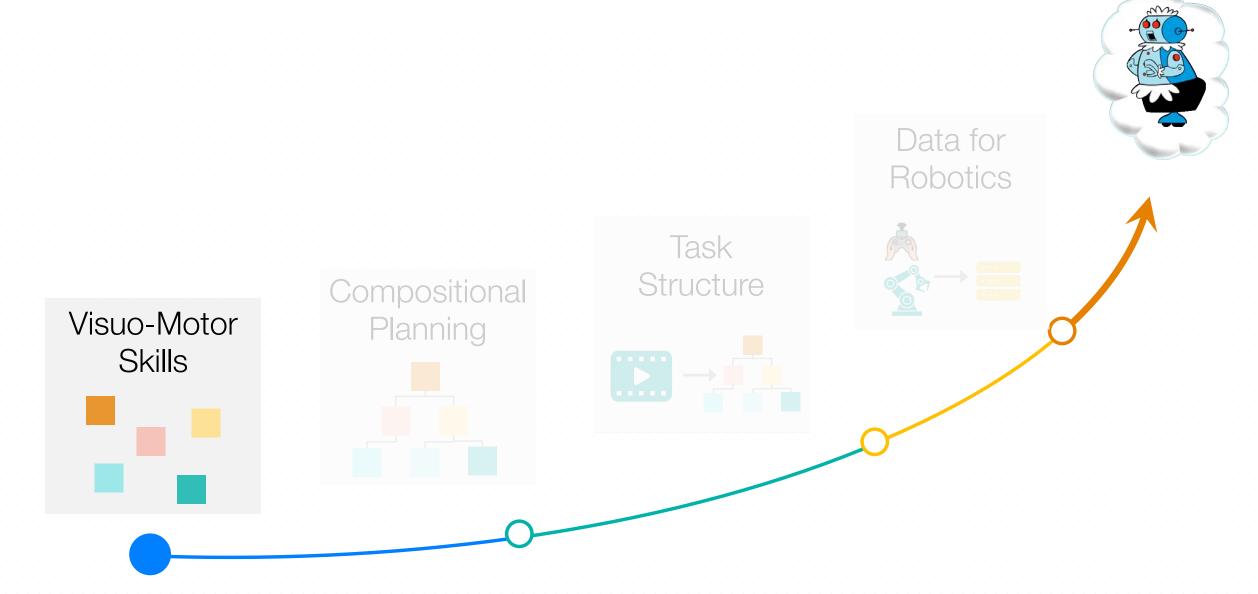
+ Sample Efficient+ Transferable

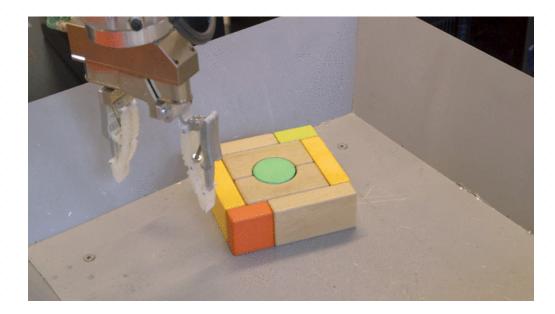


Visuo-Motor Skills: Action Representation

 $\tau = f_{Sim}(\pi(o_t))$

 $\tau = f_{Real}(\pi(o_t))$ Success 80% (10 Trials)





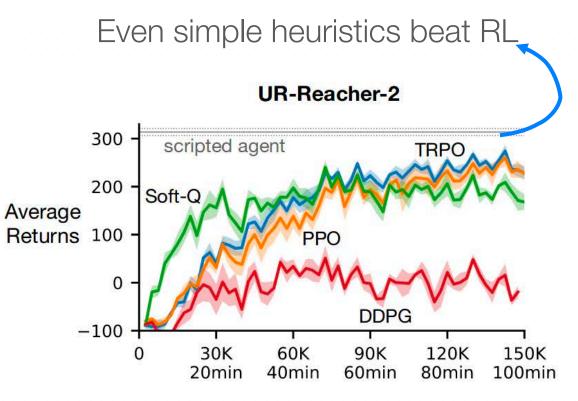
Promise of Deep RL closed loop-control with images

...albeit, with a lot of training

[Kalashnikov et al (2018). Levine et al. (2016), Pinto et al. (2016), Kalashnikov et al. (2018), Yu et al. (2016), Haarnoja et al. (2018), Lee et al. (2019), Vecerik et al. (2017)]

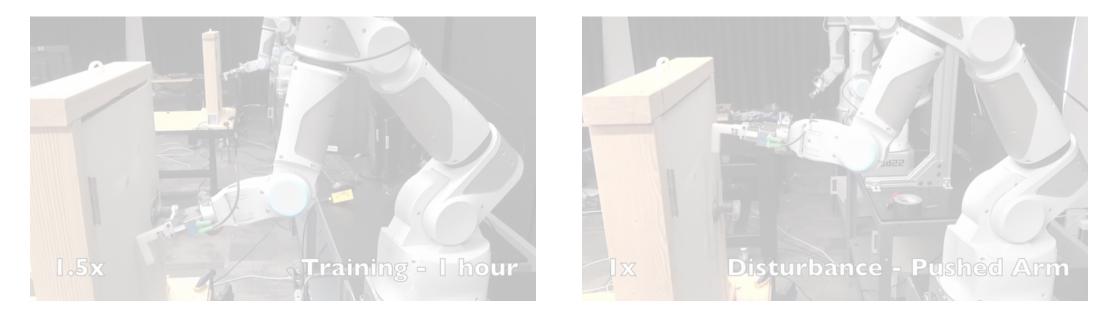
Skills: Heuristics often beat RL

RL struggles with structured, multi-step skills



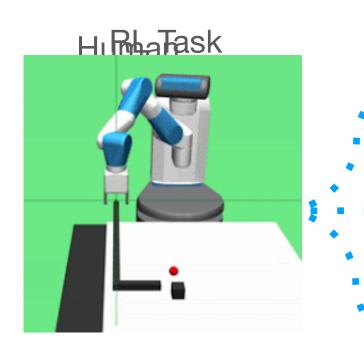
IROS 2019, Mahmood et al. 2018

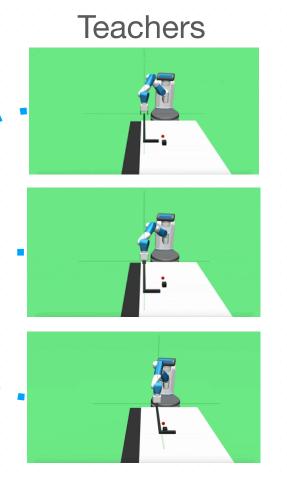
Skills: Exploration without Guidance



Random Exploration is slow ...even when first steps are obvious

Can Human Intuition Guide Exploration?



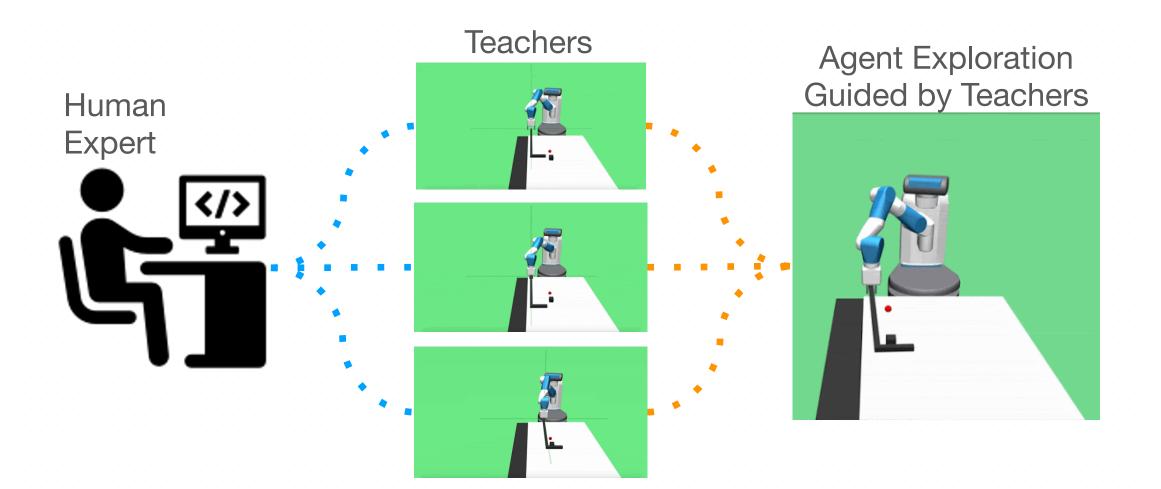


Intuition

Implement <u>Useful</u> Skills ...but <u>not</u> full solution

Teachers

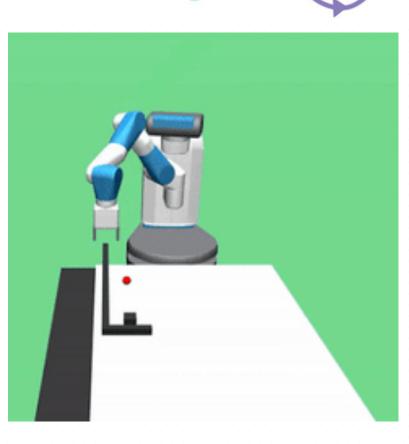
Black-box controllers solving parts of the task



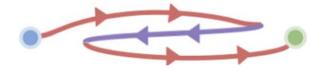
Goals: A) faster agent training B) optimal test-time agent performance

Naive action choice might not work well!

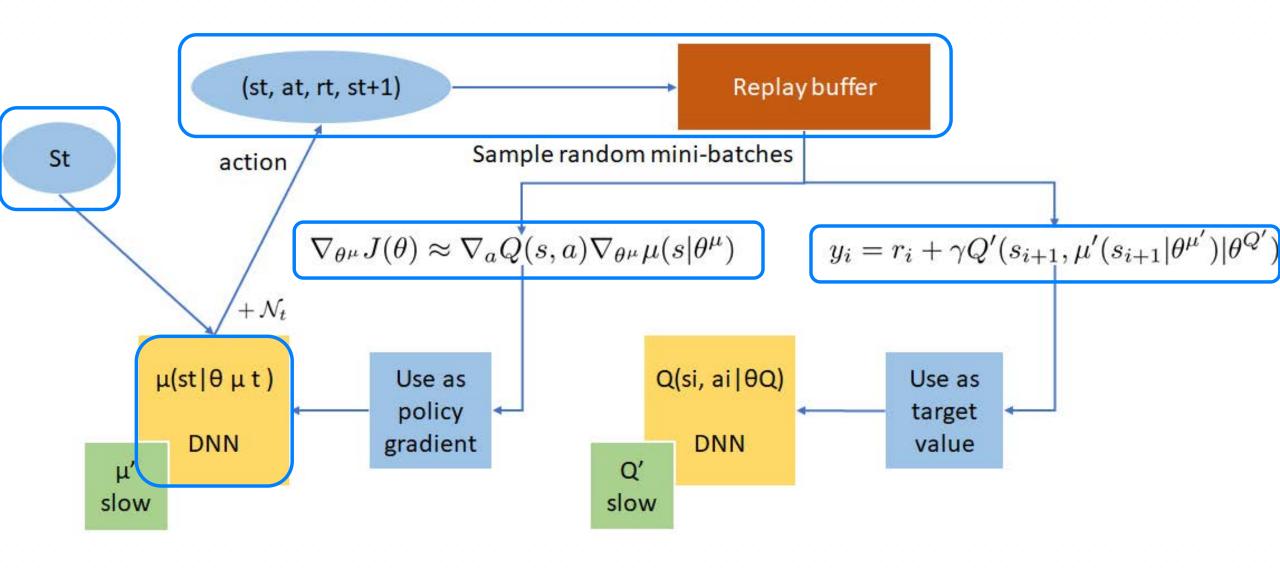
Partial



Contradictory

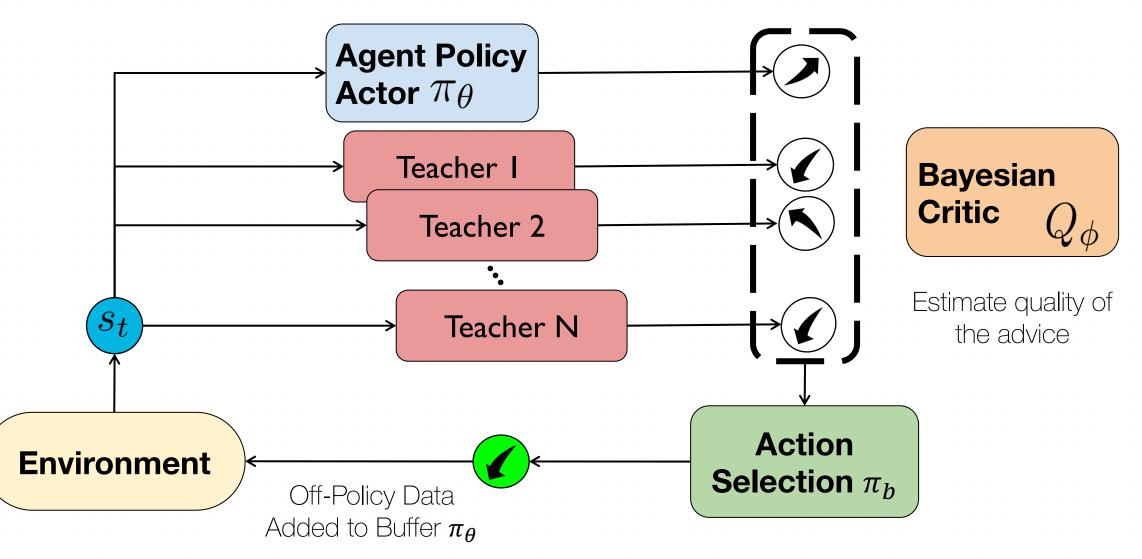


Off-Policy RL: DDPG Review



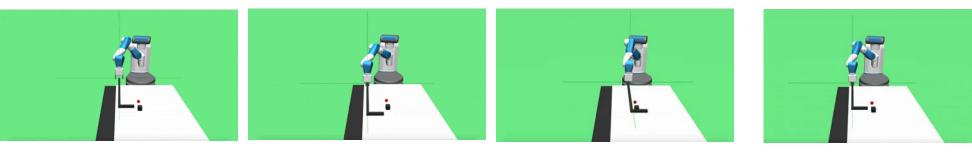
Lillicrap et al. 2015

AC-Teach: Actor-Critic with Teachers



Experiments

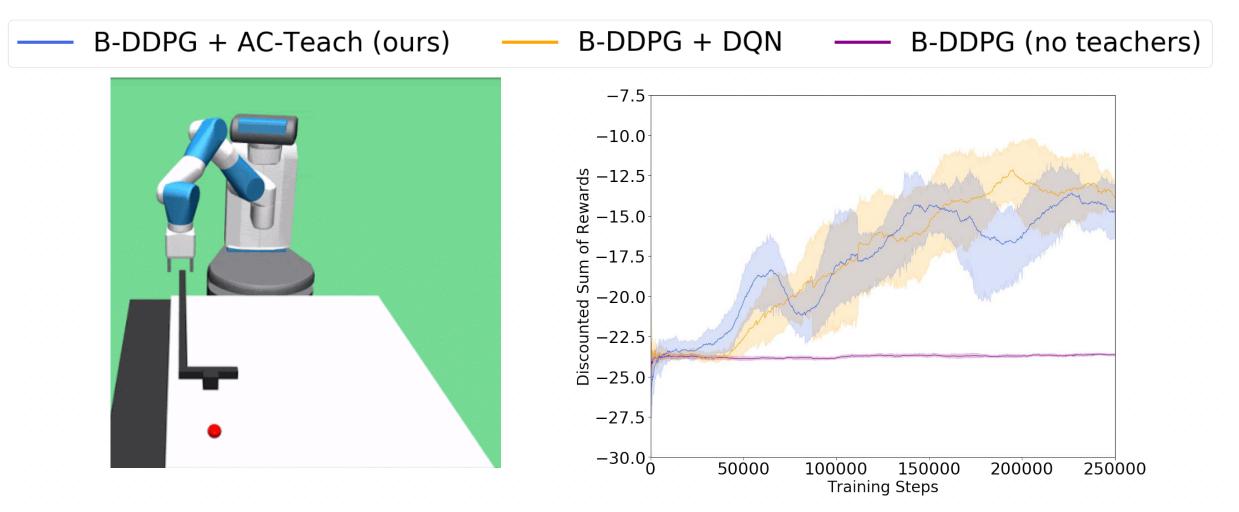
Teachers:



pull

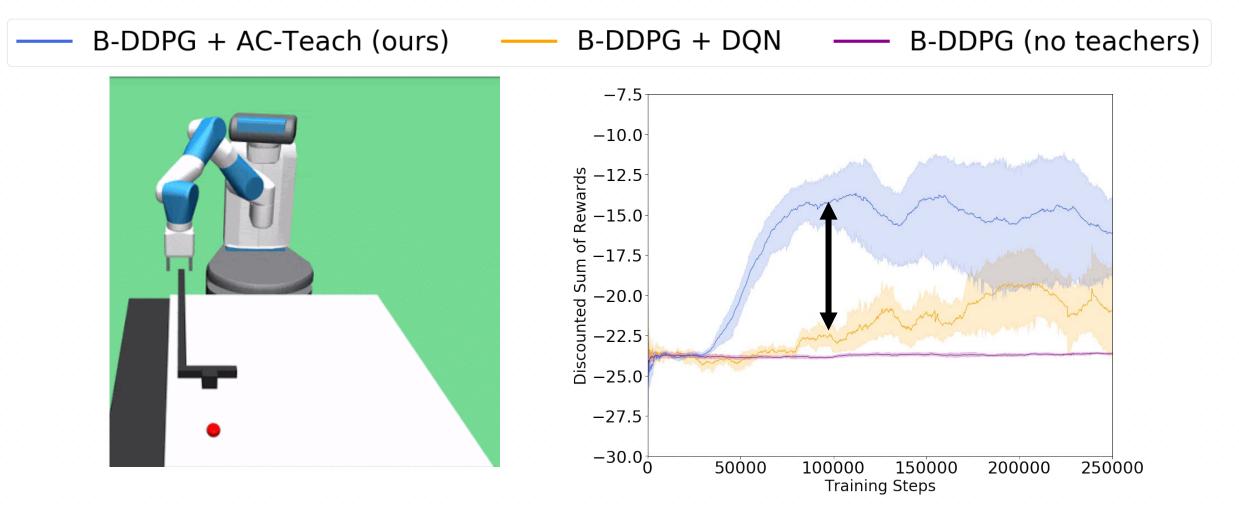
grab hook position hook

Results



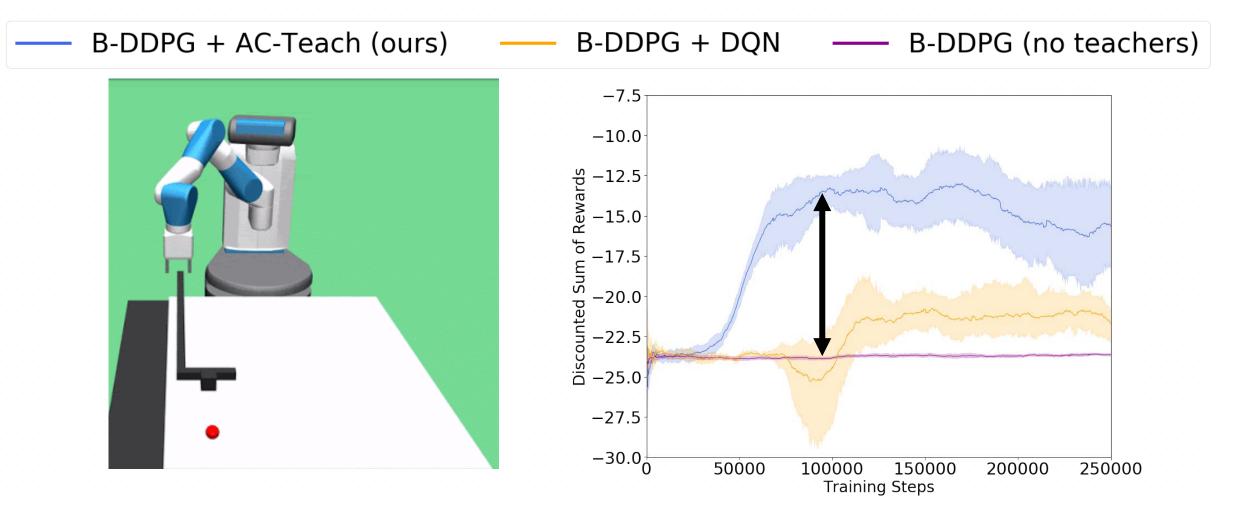
AC-Teach is able to leverage a single teacher well

Results



AC-Teach speeds up training given multiple teachers

Results

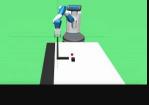


AC-Teach has agent learn behaviors not in teacher set

AC-Teach: CoRL 2019

Visuo-Motor Skills

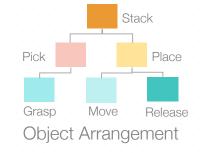
IROS 2019



CoRL 2019

Action Representations and Weak-Supervision provide /isuo-Motor structure to enable learning efficiency and generalization

Generalizable Autonomy in Robot Manipulation



RSS 2018, IJRR 2019

Data for Robotics

Sequential Skills

Skills: Surface Wiping

Sequential Skills

Skills: Tool Use

Hammering (with unknown objects)

Cutting (with new knife)

Sweeping (with new broom)

Sequential Skills: Manipulation with Tools Task-Oriented Grasping

Tool-Use

Initial State

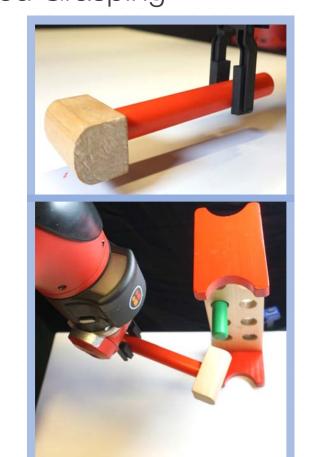
Unknown Object

Task-Agnostic Grasping¹

Optimizes for Grasp Success Only

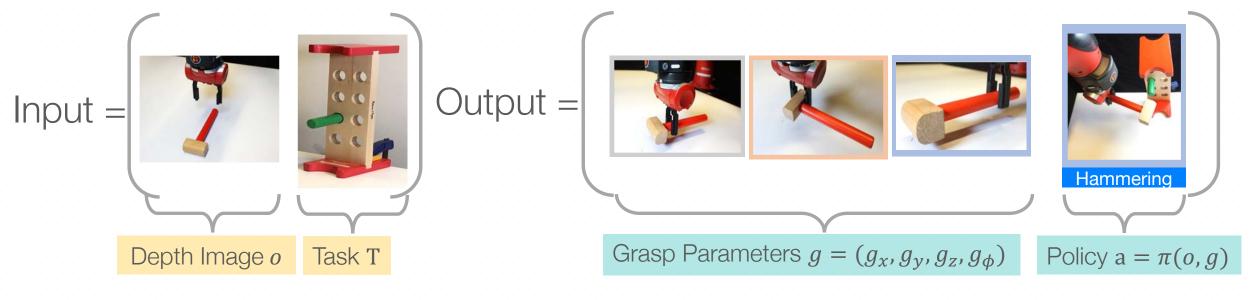
Suboptimal for Task!

¹ Pinto et al. '16, Levine et al. '16, Mahler et al. '18, Kalashnikov et al. '18



Hammering

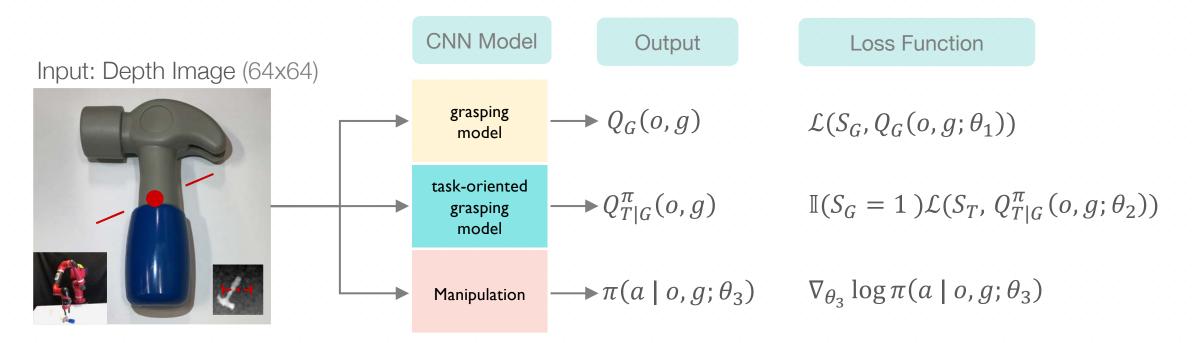
Visuo-Motor Skills: Task-Oriented Grasping



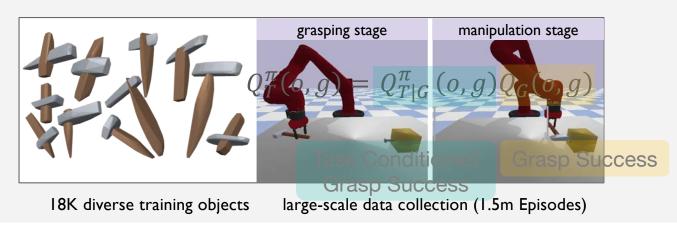
Task Success $g^*, \pi^* = \underset{g,\pi}{\operatorname{argmax}} Q^{\pi}_T(o,g) - \operatorname{Score Function}$ $Q^{\pi}_T(o,g) = P_{\pi}(S_T = 1 | S_{\mathcal{C}}, \mathfrak{F}) 1, | \circ \circ g \mathfrak{F}(S_G = 1 | o,g)$ $Q^{\pi}_T(o,g) = Q^{\pi}_{\mathfrak{A} \models \mathcal{C}} S_{\mathcal{C}} (o,g)$ Task Conditioned Grasp Success Grasp Success

RSS 2018, IJRR 2019

Visuo-Motor Skills: Task-Oriented Grasping

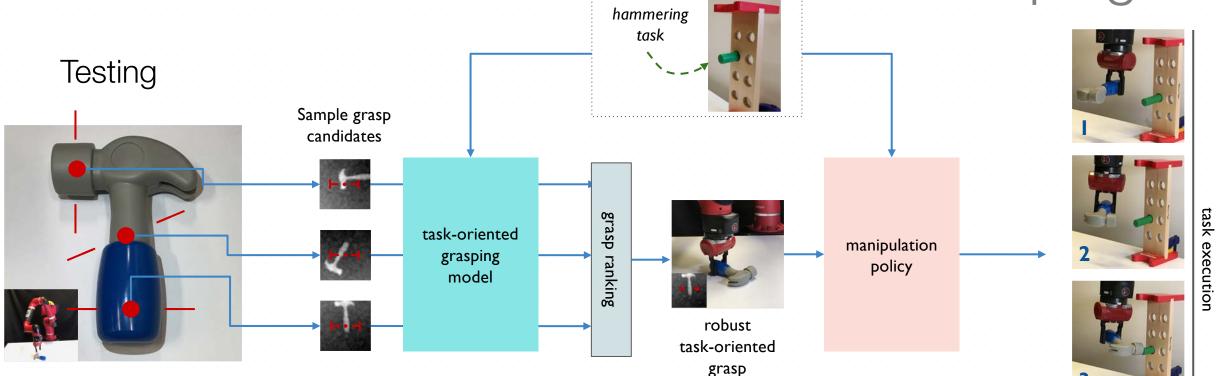


Training

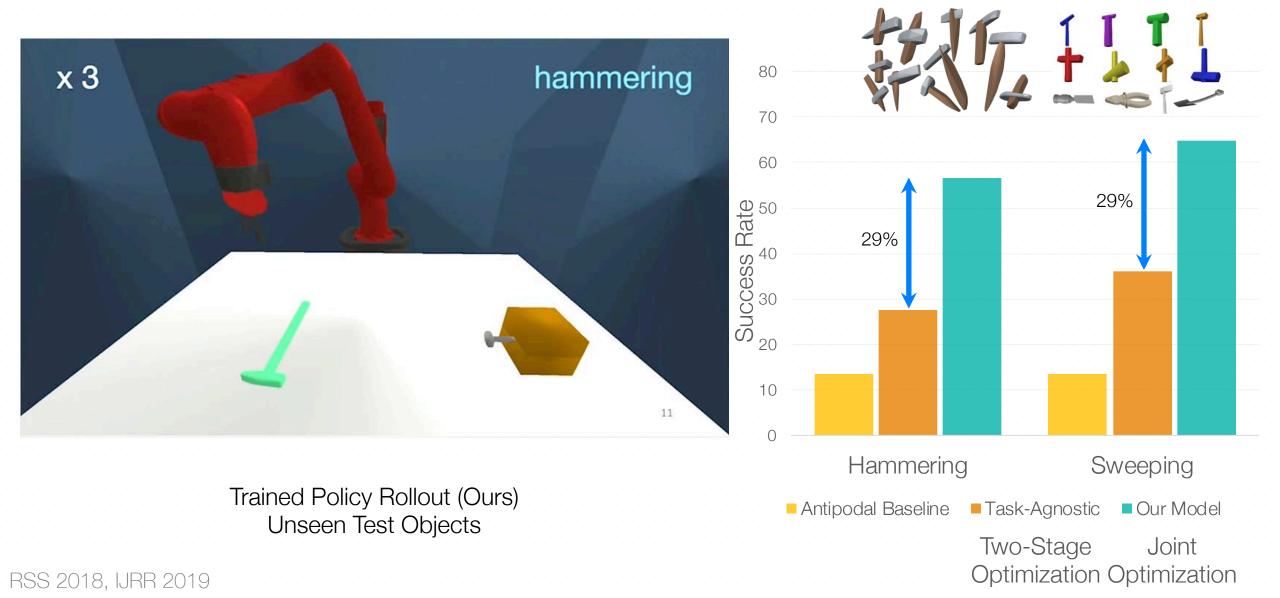


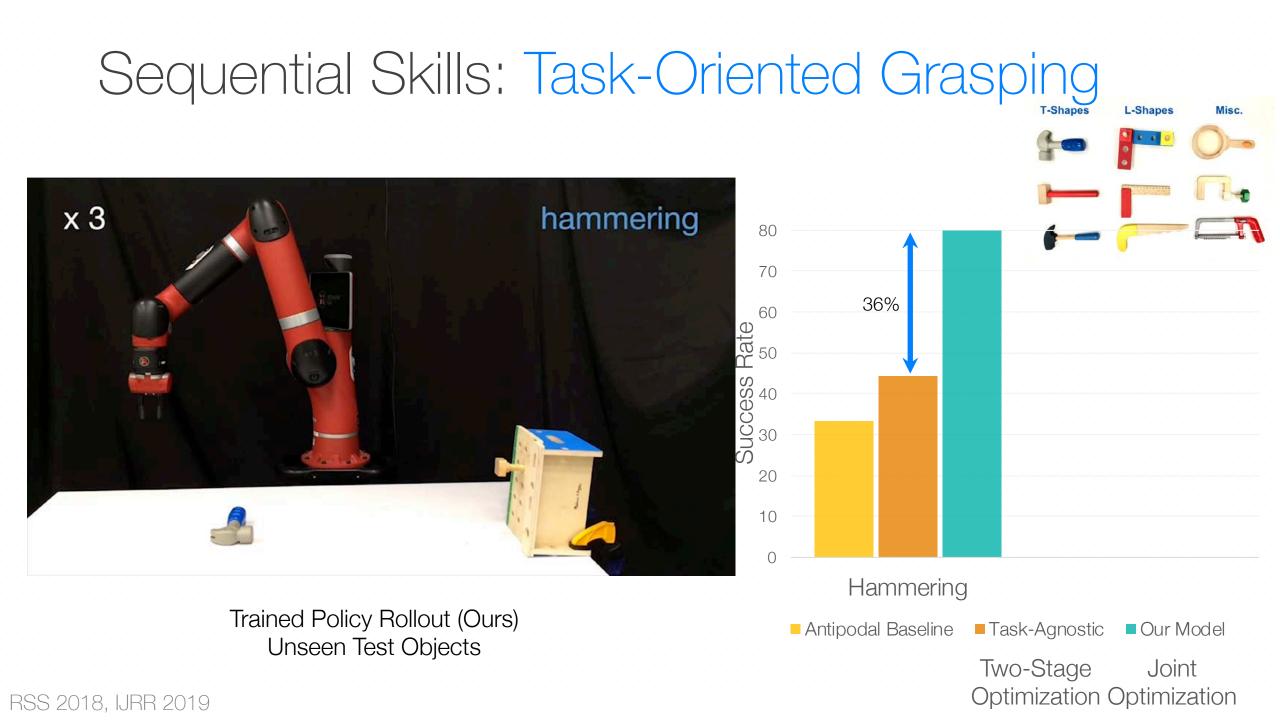
RSS 2018, IJRR 2019

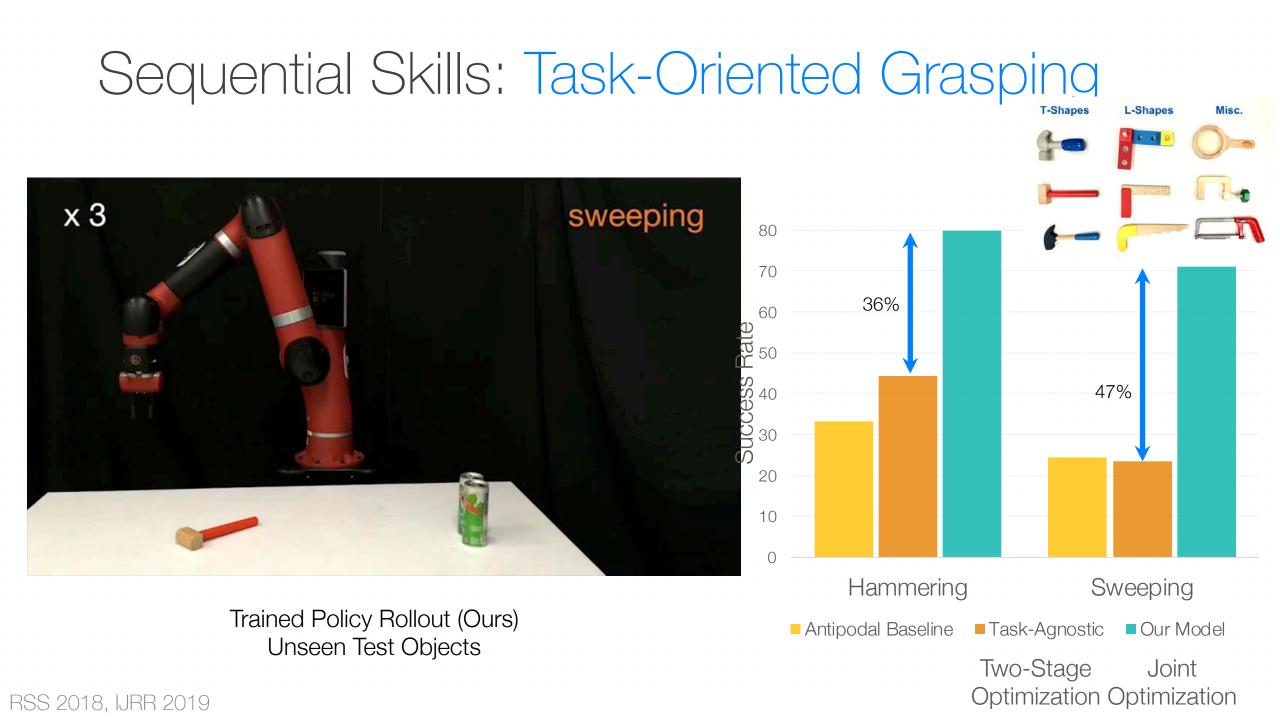
Visuo-Motor Skills: Task-Oriented Grasping



Sequential Skills: Task-Oriented Grasping







Sequential Skills

Skills: Surface Wiping

Sequential Skills

Skills: Tool Use

Hammering (with unknown objects)

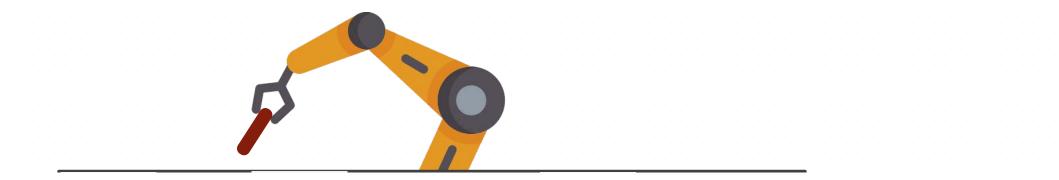
Cutting (with new knife)

Sweeping (with new broom)

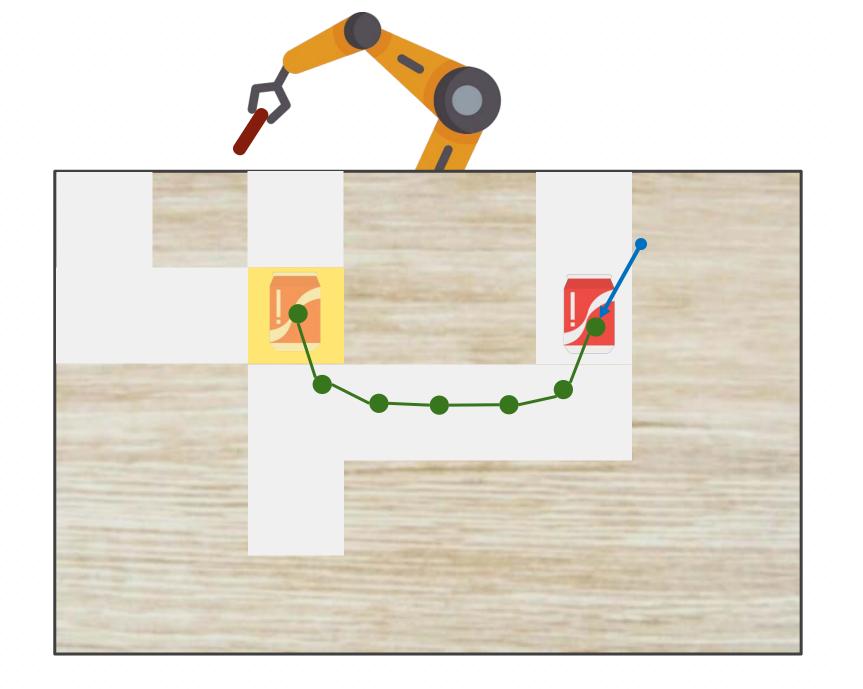
Sequential Skills: Multi-Step Reasoning

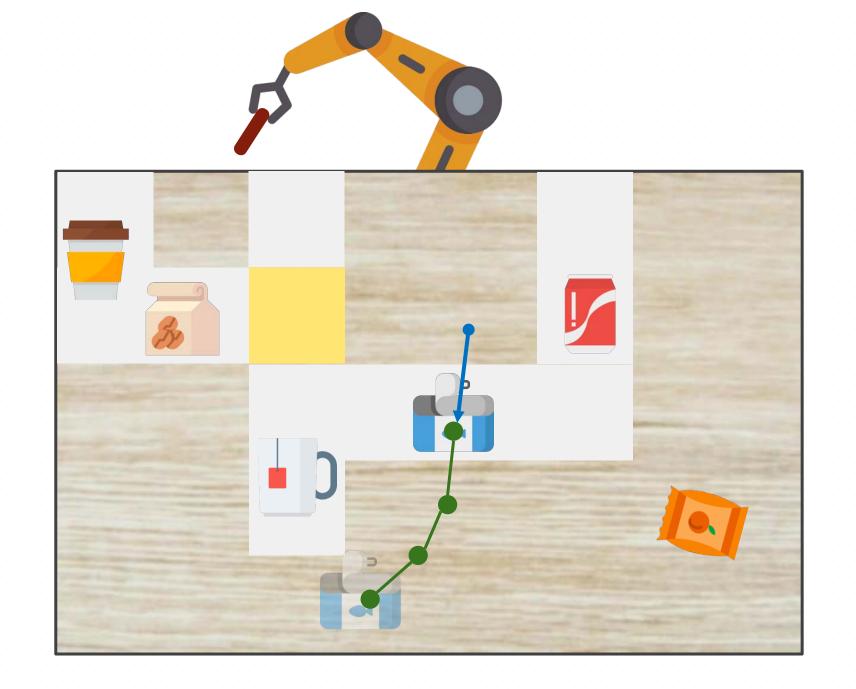
Skills: Multi-Step Reasoning

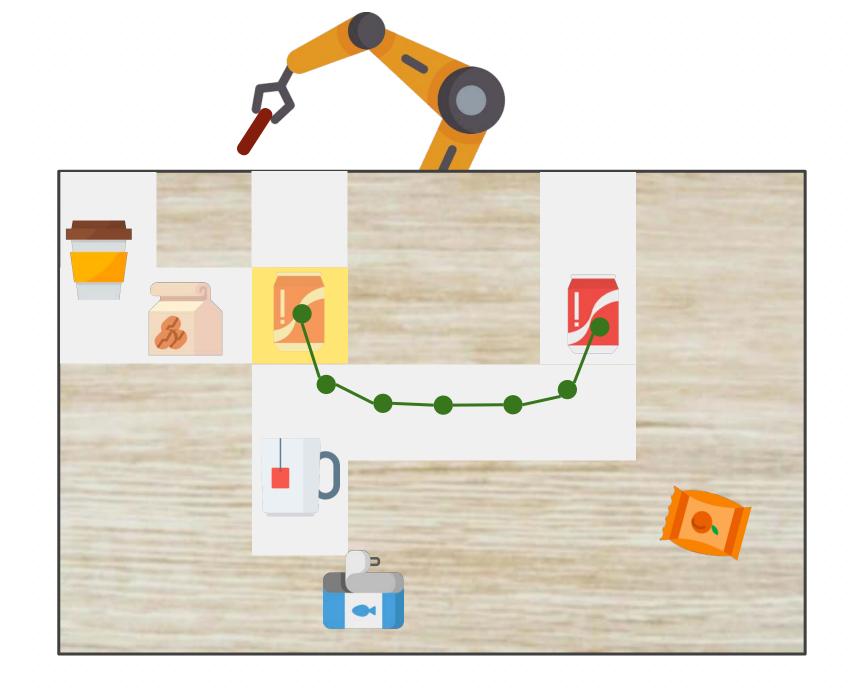
Generalization



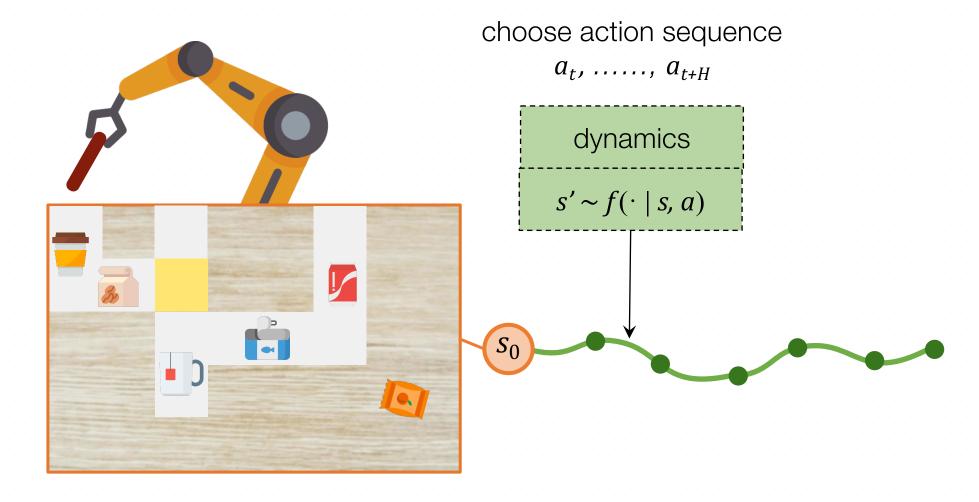
Can we learn multi-step reasoning in robotics under physical and semantic constraints





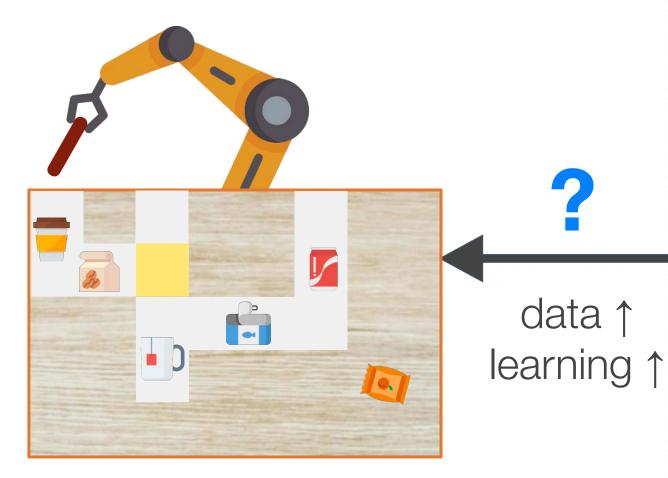


Model-based learning



[Deisenroth et al, RSS'07], [Guo et al, NeurIPS'14], [Watter et al, NeurIPS'15], [Finn et al, ICRA'17],

Model-based learning



[Deisenroth et al. RSS'07] [Agrawal et al. ICRA'16]

data ↑

[Ebert et al. CoRL'17]

Tat

[Janer et al. ICRA'19]

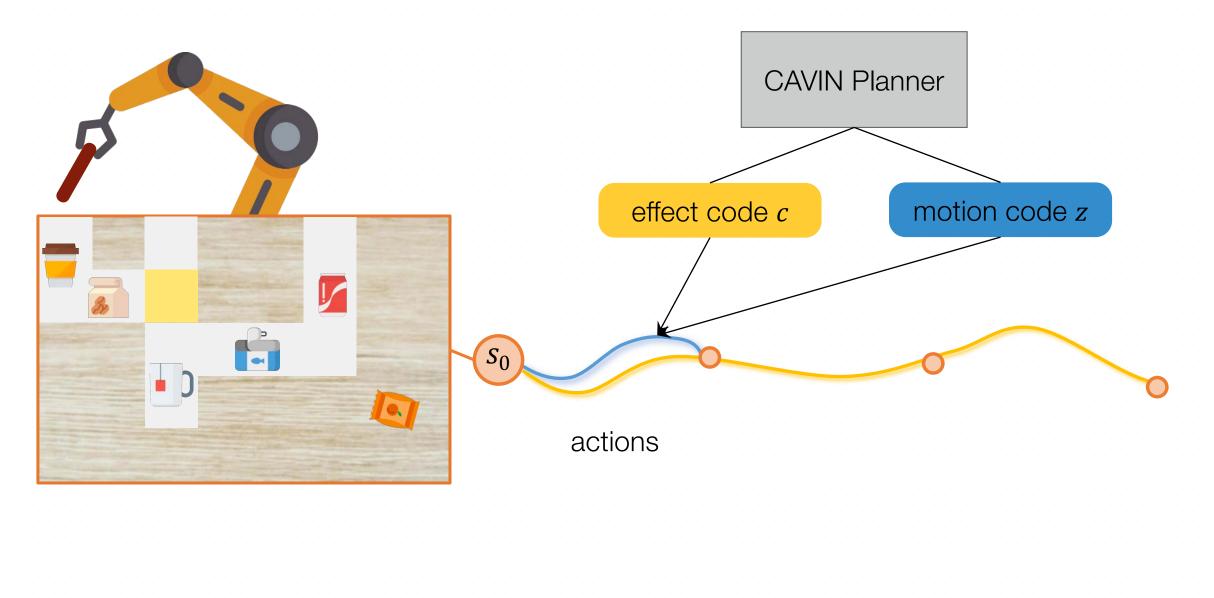
effect code c

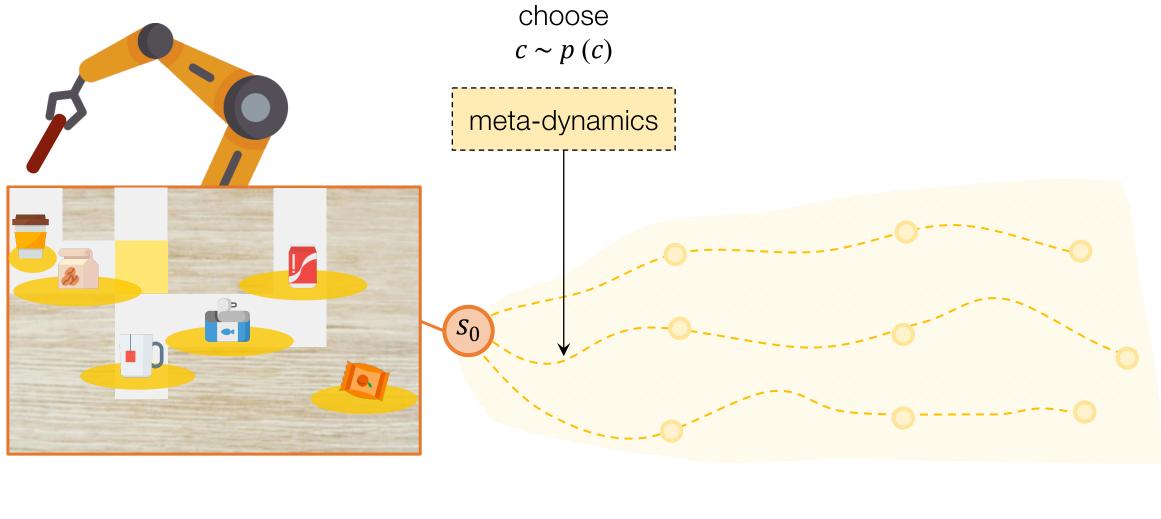
motion code z

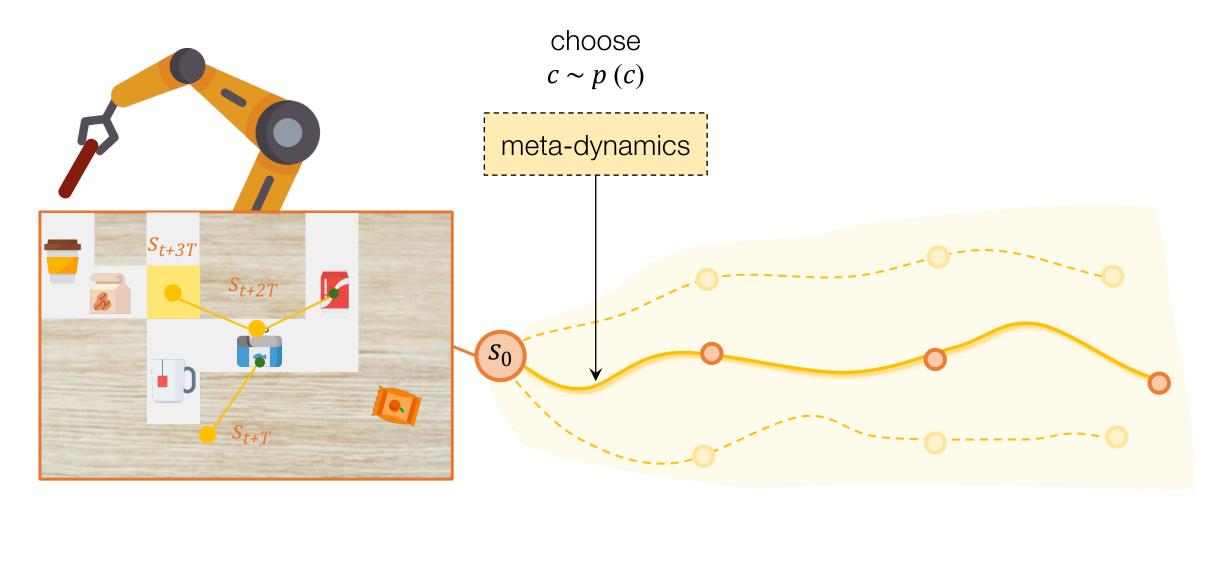
*S*₀

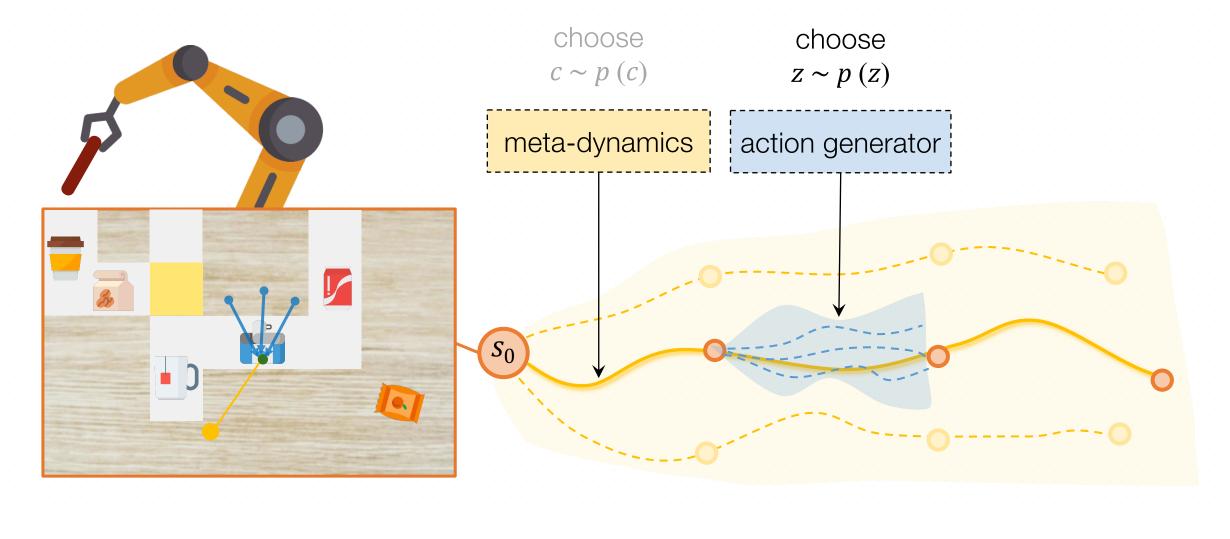
Leverage Hierarchical Abstraction in Action Space Without Hierarchical Supervision

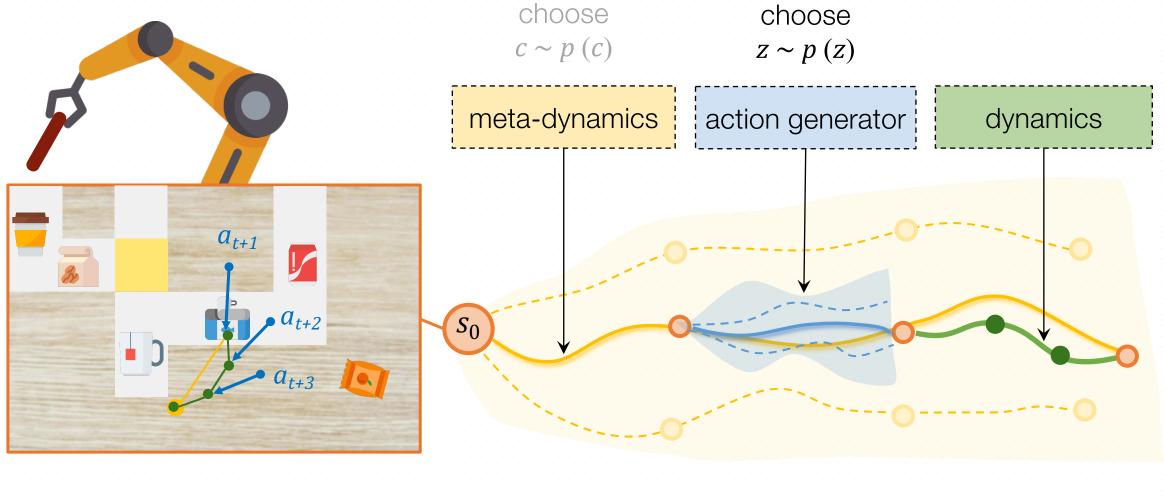






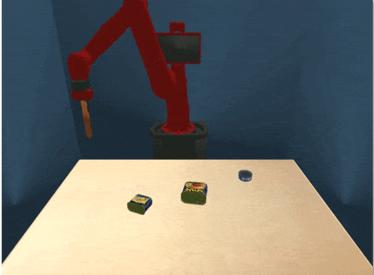


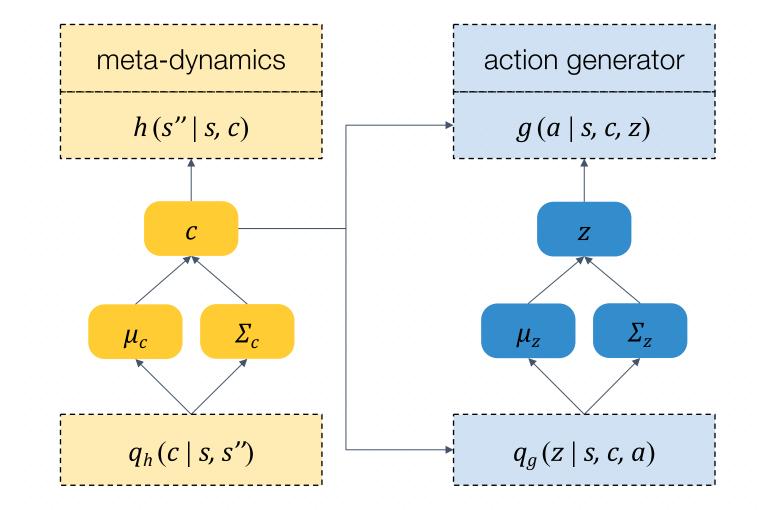


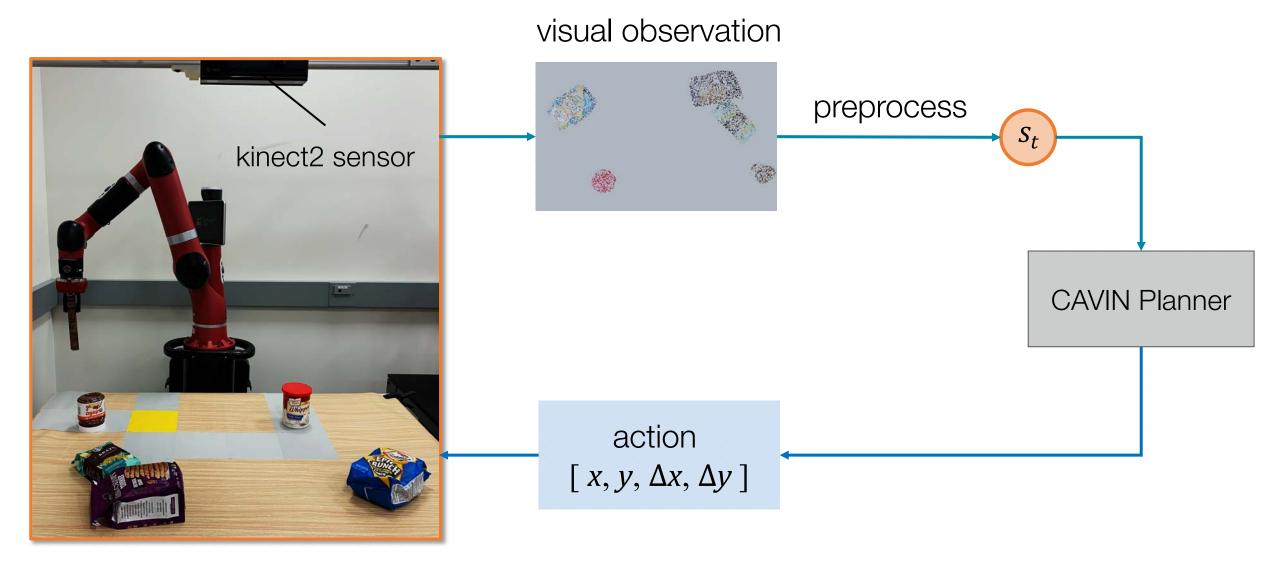


Learning with cascaded variational inference

task-agnostic interaction







clearing

Clear all objects within the area of blue tiles.

insertion

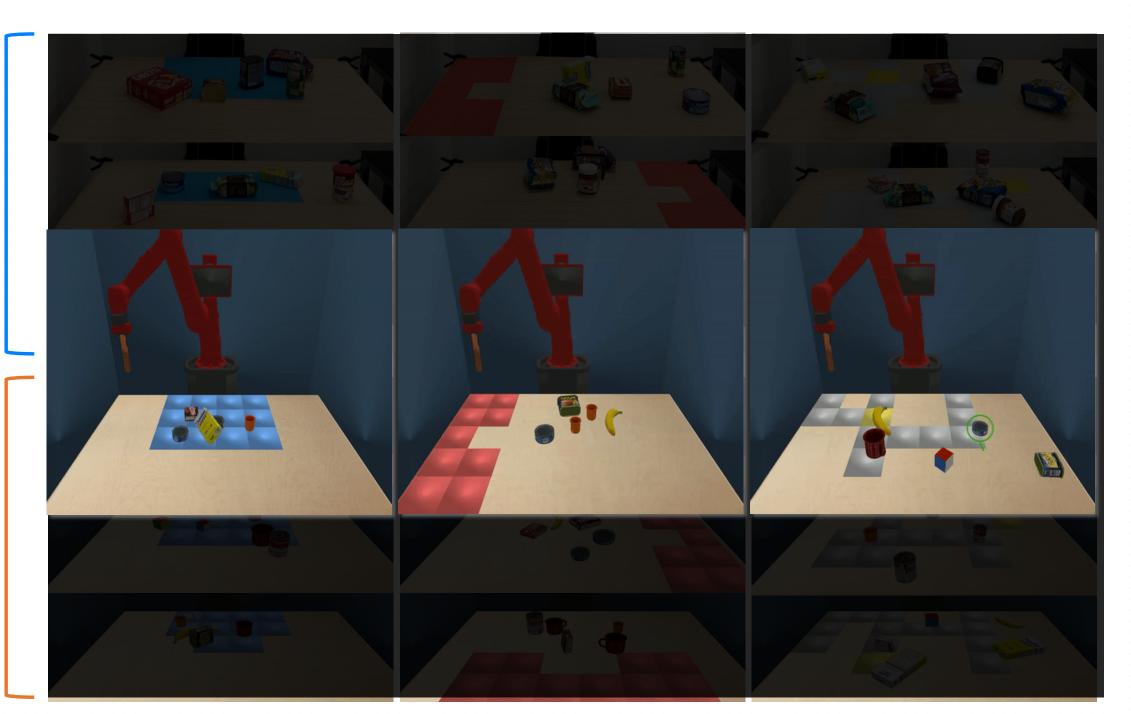
Move the target to the goal without traversing red tiles.

crossing

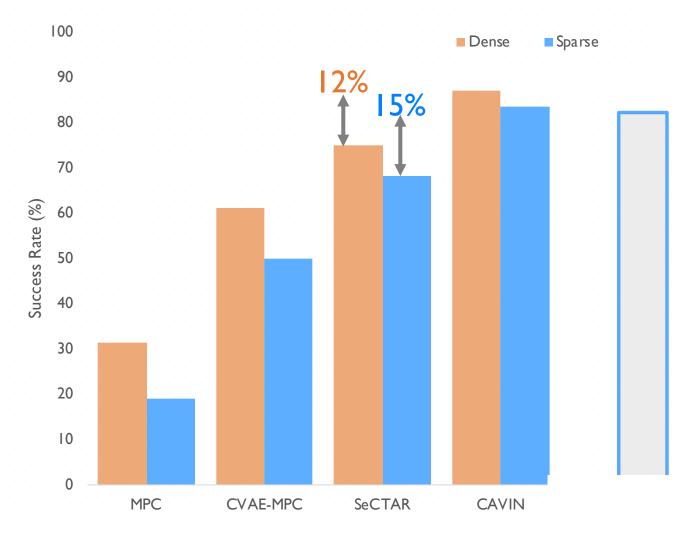
Move the target to the goal

across grey tiles

Real



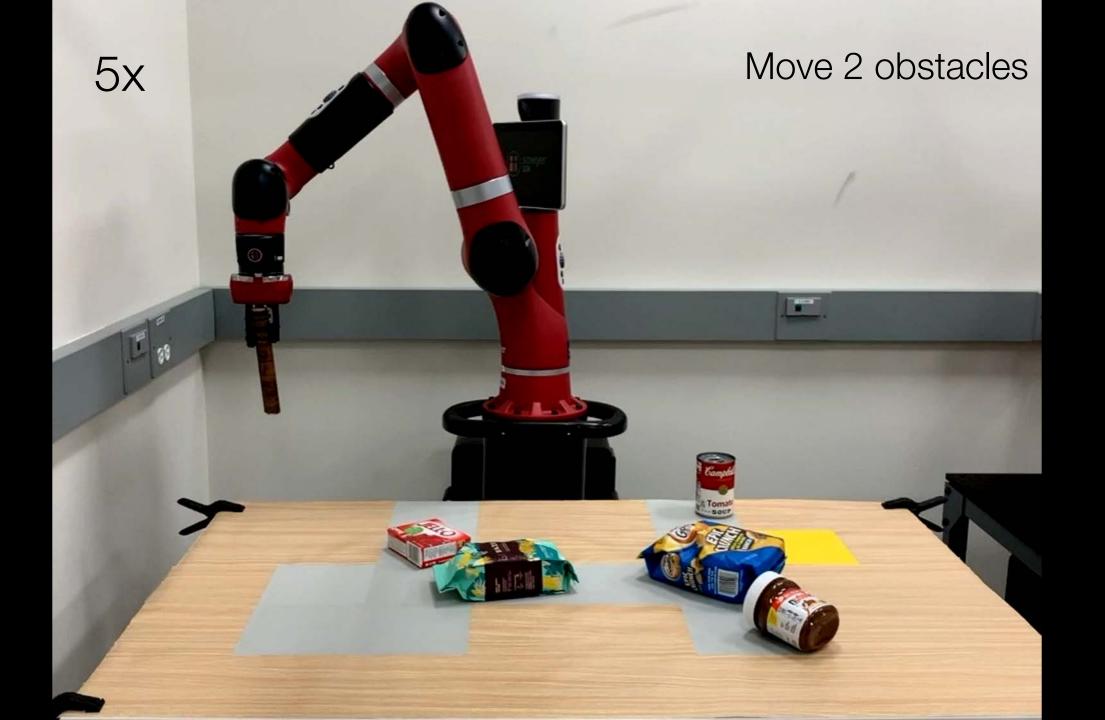
Quantitative Evaluation



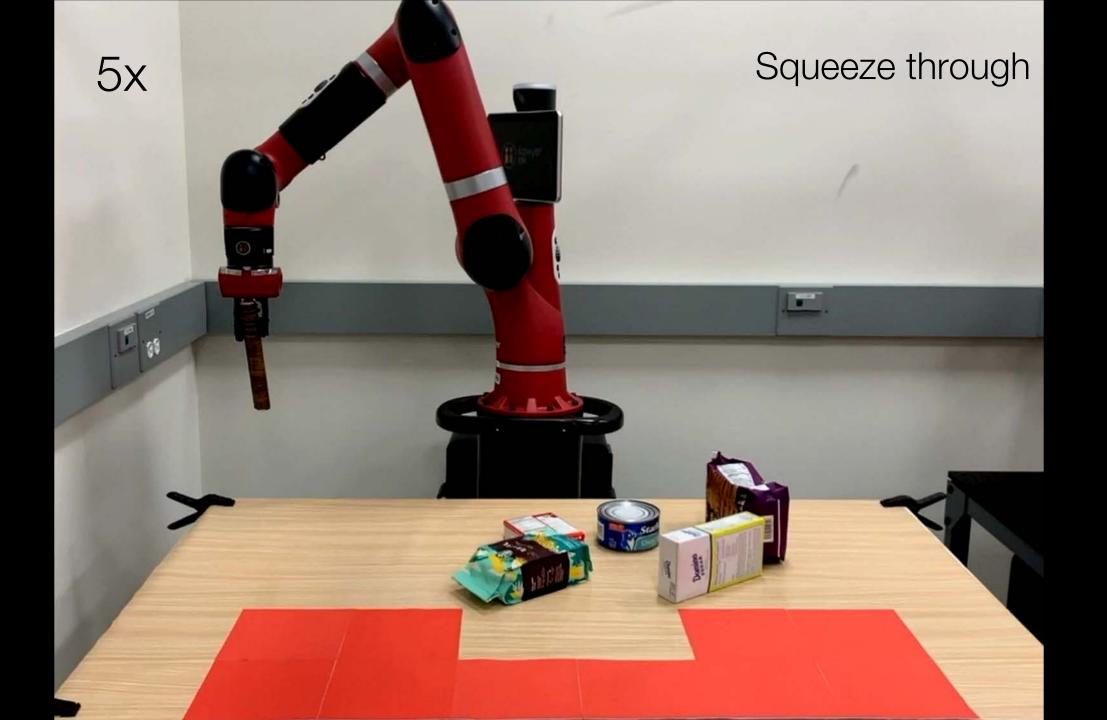
Hierarchical Latent space dyn. ↓ Better performance with sparse reward signal

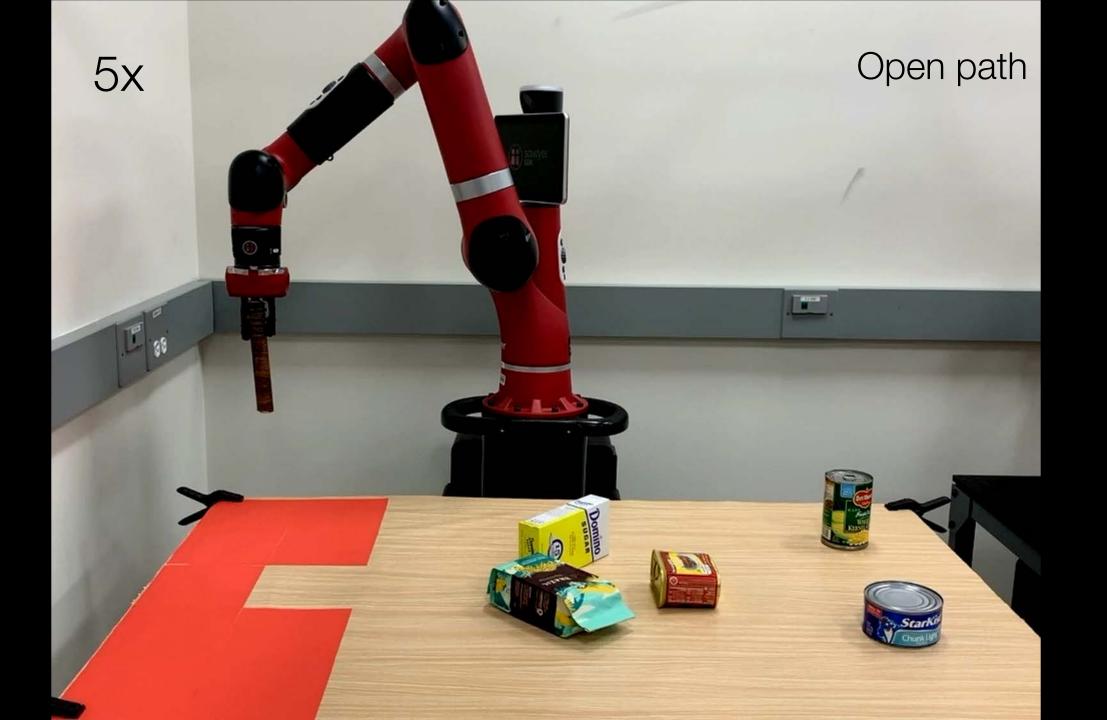
Averaged over 3 Tasks with 1000 test instances each

MPC (Guo et al. '14, Agrawal et al. '16, Finn et al. 17); CVAE-MPC (Ichter et al. 18), SeCTAR (Co-Reyes et al '18)

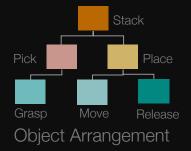


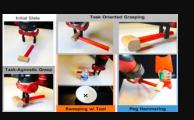




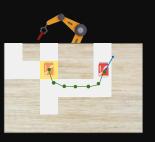


Compositional Planning

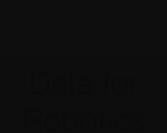




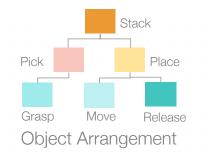
RSS 2018, IJRR 2019



CoRL 2019 (oral)



Self-Supervision and Structured Latent Variable Models Planning lead to good representations that generalize



Skills

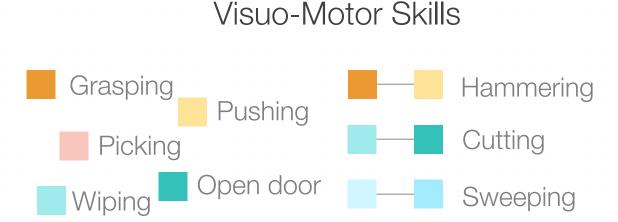
Data for **Robotics**

Compositional Visuo-Motor Planning

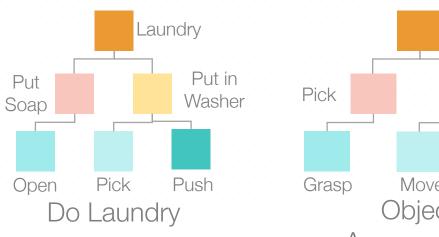
Task Structure

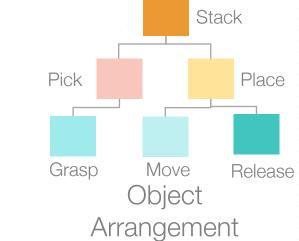
Complex Task Structure

Visuo-Motor Skills



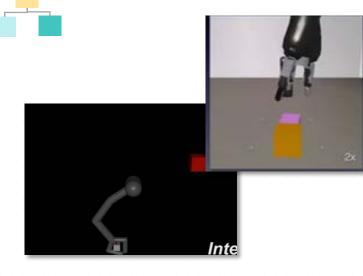
Complex Task Structure





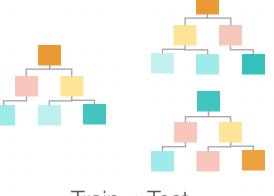
Complex Task Structure

Compositional Planning: Current Paradigm



Kober and Peters '09 Pastor et. al. '09 Hinds Demoktangen for Infolder Learning Here Tenny Tenny Tenny to Handler

Desired



Train ≠ Test

Meta Imitation Learning

- New Task Structures
- Few-Shot performance
- Input State as Video

Reinforcement Learning

- Sample Inefficient
- Multi-step Structured Tasks
- Needs non-trivial Reward Shaping

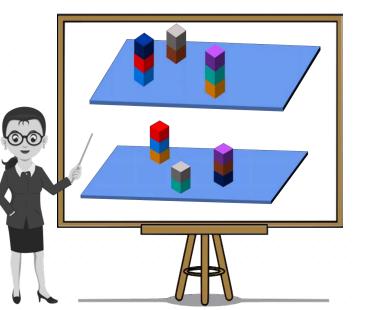
Imitation Learning

- Task Segmentation is non-trivial
- Multi-modality of Search Space
- Fixed Permutation of Primitives

RL: [Schaal 1997], [Chebotar et al., '17], [Yahya et al., '16], [James et al., '17], [Popov et al., '17], [Zhu et al. 18], [Hausman et al. 18] Imitation: [Calinon et al 2008], [Argall et al 2009], [Kober, Peters, et al. 09], [Pastor et al, 09], [Schulman et al. 2013], [Kroemer et al, 15], [Garg et al 2017]

Compositional Planning: Challenge

Instructional Demos



I. Learn Multiple Tasks

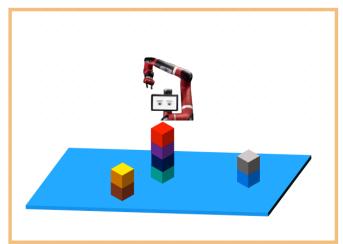
in the Same Domain

Training Tasks

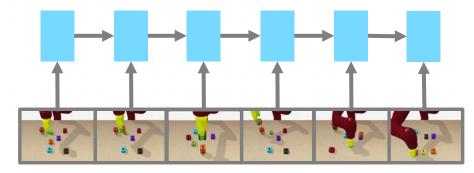
Test Task

II. Generalize to New

Tasks with a Single Demo



Compositional Planning



[Duan et al. 17; Finn et al. 2017; Wang et al. 2017; Yu et al. 2018]
> Our Method [ICRA'18], [CVPR'19], [IROS'19]

Models input demonstration as a flat sequence

Models input demonstration as a Compositional Hierarchy

One Shot Imitation Learning from Videos

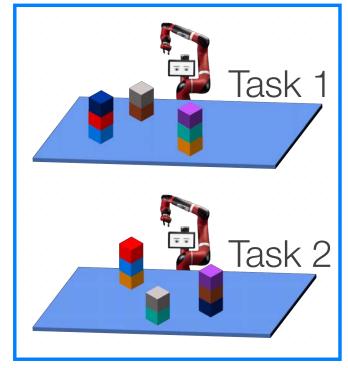
Compositional Planning: Task Programming

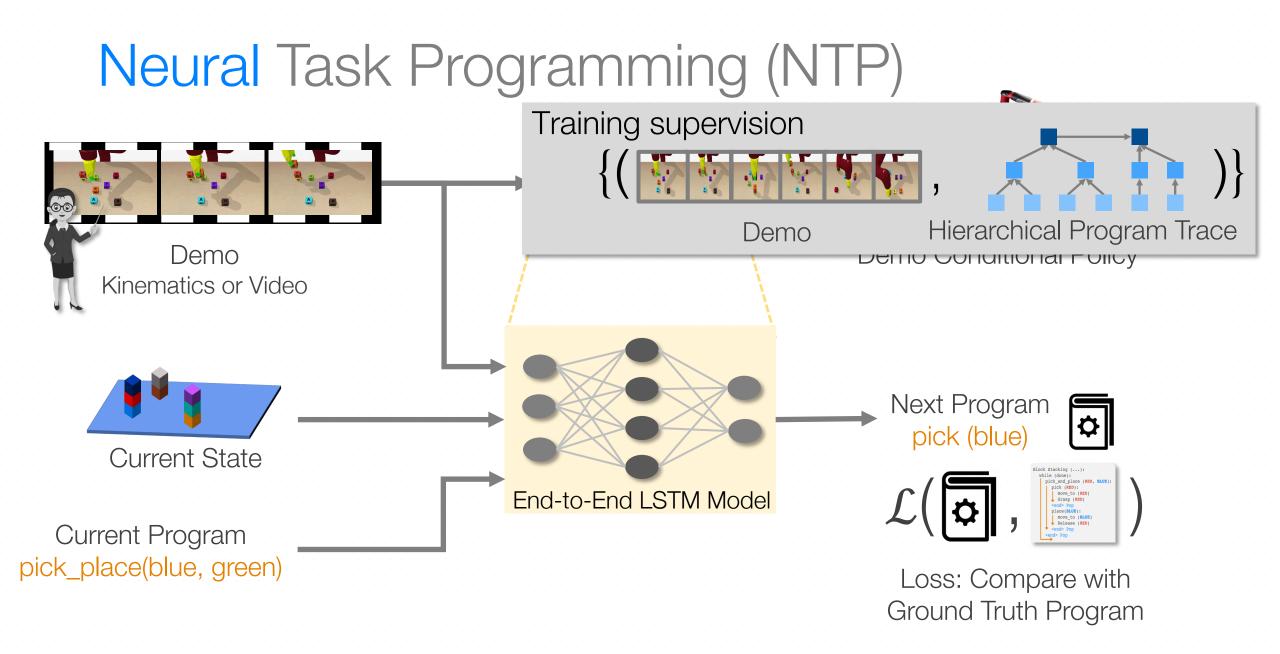
```
Block Stacking (...):
  while (done):
     pick and place (RED, BLUE):
       pick (RED):
          move to (RED)
          Grasp (RED)
        <end> Pop
        place(BLUE):
          move_to (BLUE)
                                                 Task 1
          Release (RED)
                                               Sub-task 1
        <end> Pop
                                      Move Red-block on top of Blue
     <end> Pop
```

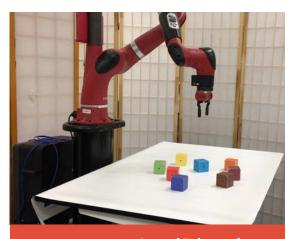
Compositional Planning: Task Programming

```
Program 1
Block Stacking (...):
  Block Stacking (...): Program 2
     while (done):
       pick and place (RED, BLUE):
          pick (RED):
            move to (RED)
            Grasp (RED)
         <end> Pop
          place(BLUE):
            move to (BLUE)
            Release (RED)
          <end> Pop
        <end> Pop
```

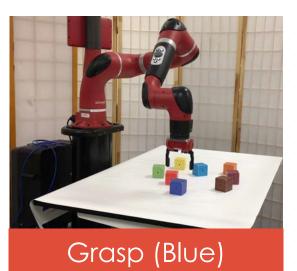
Training Task Structures







Move_to (Blue)



Move_to (Red)

Release()

Neural Task Programming

distant of

Demo

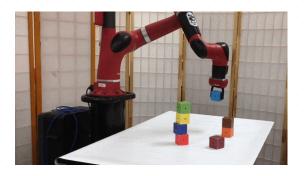
Autonomous Execution

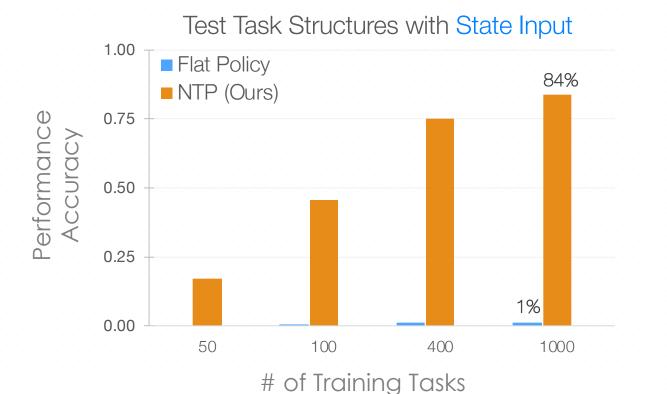
Recovery from Intermediate Failures

Output is not an Open Loop State Machine

Closed Loop Feedback Policy

Neural Task Programming Results





Pose Est. + Plan E2E Plan

Better Generalization than Flat Policy + Works with Vision

Failure Modes

towyer

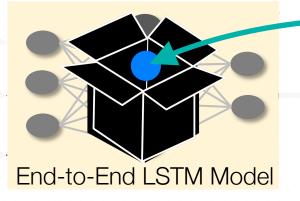
-

Compositional Planning: Task Programming

Demo Kinematics or Video

Current Program

meta-learning model

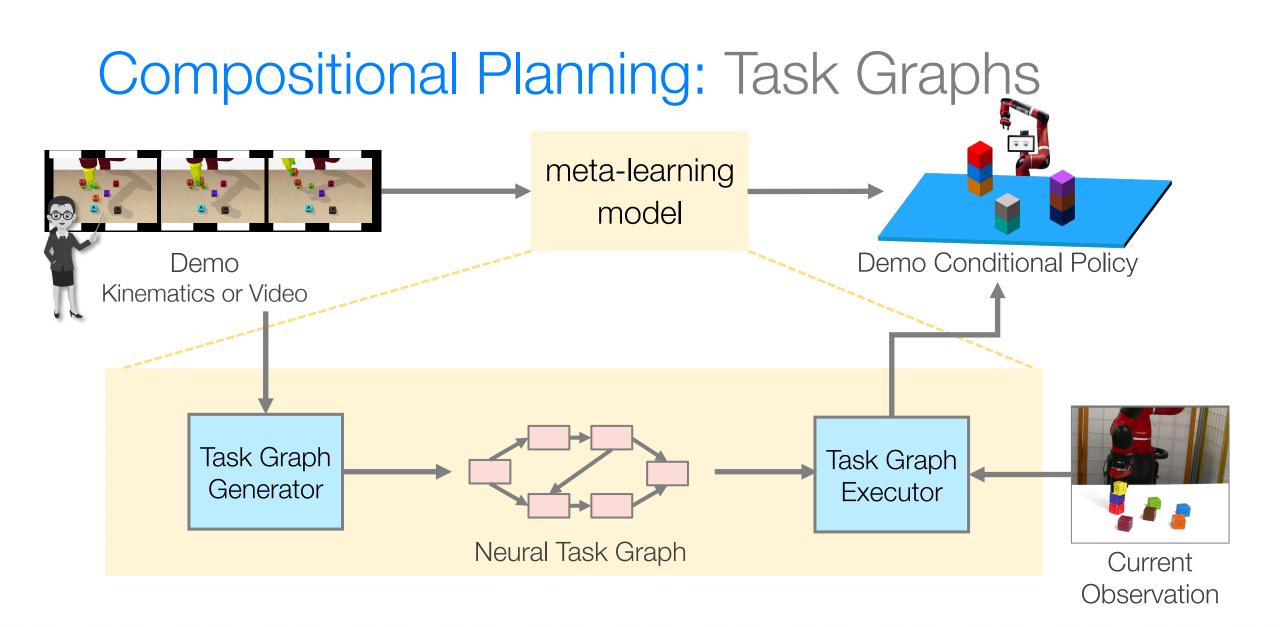


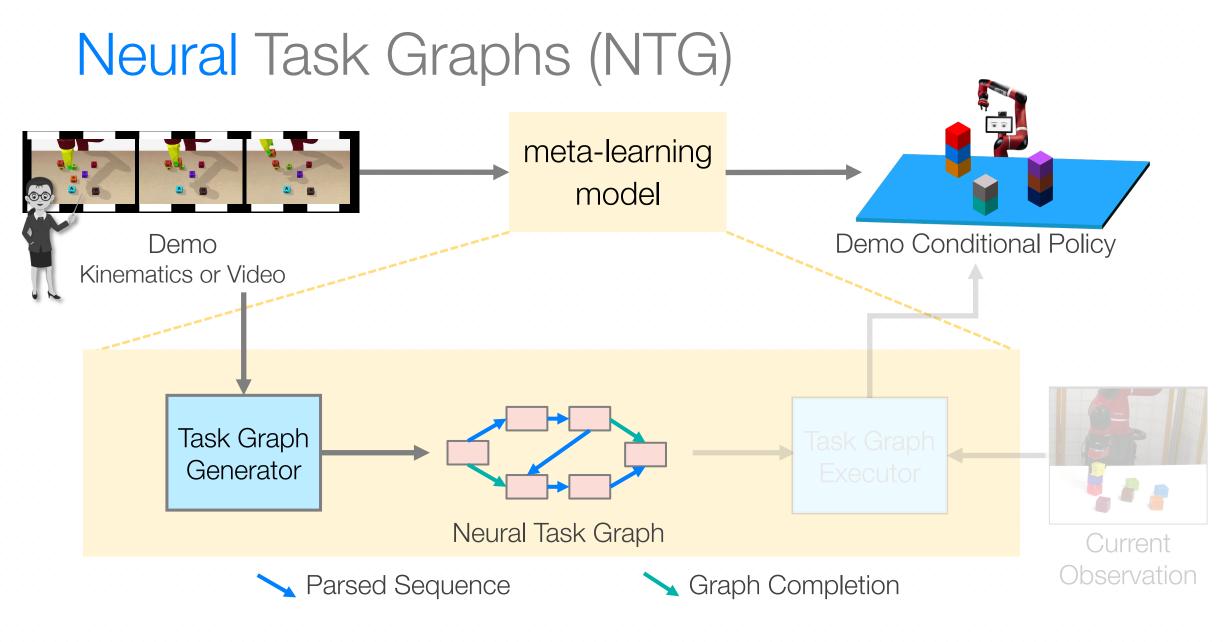
Black-Box Model Demo Conditional Policy

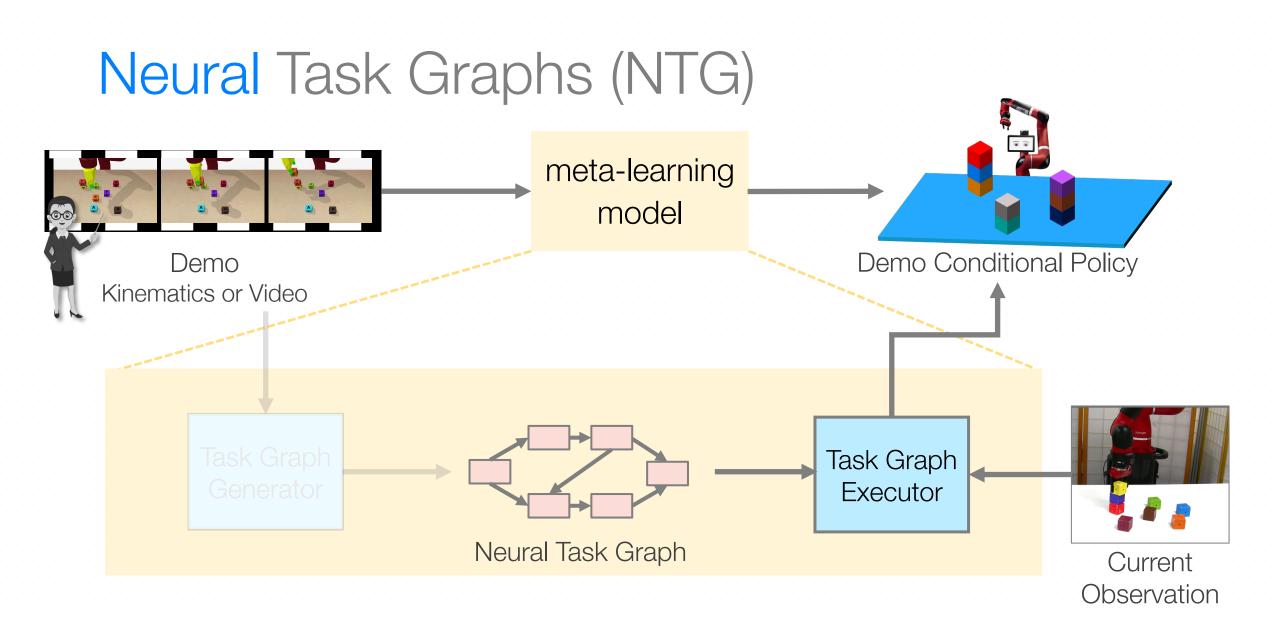
Compositional Model Prior

Next Program pick (blue)

Program Induction Inductive Bias on Input-Output



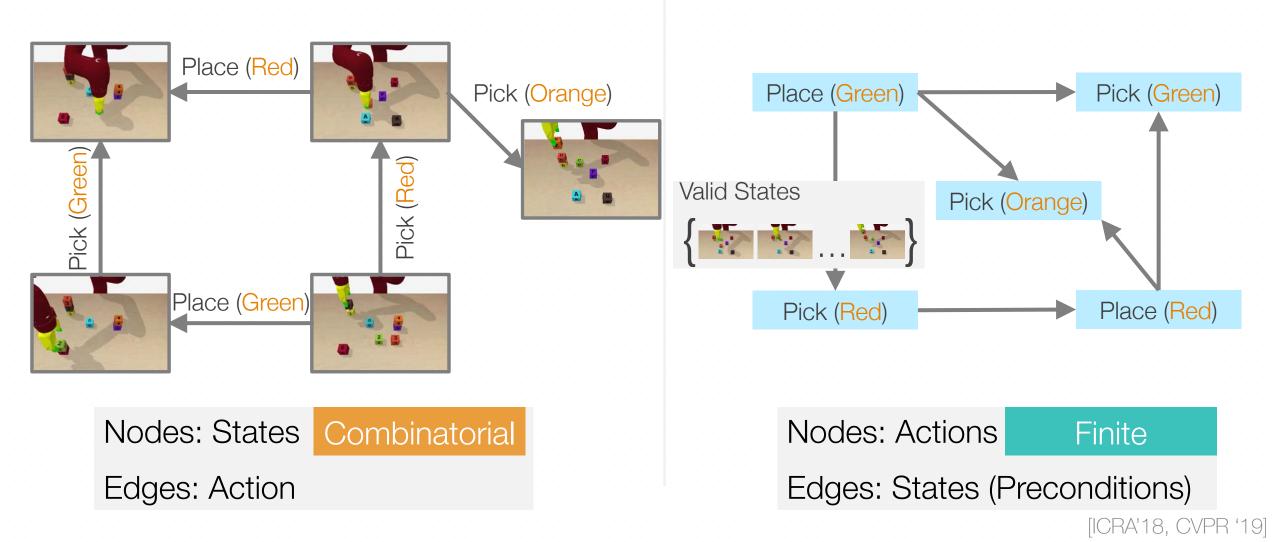




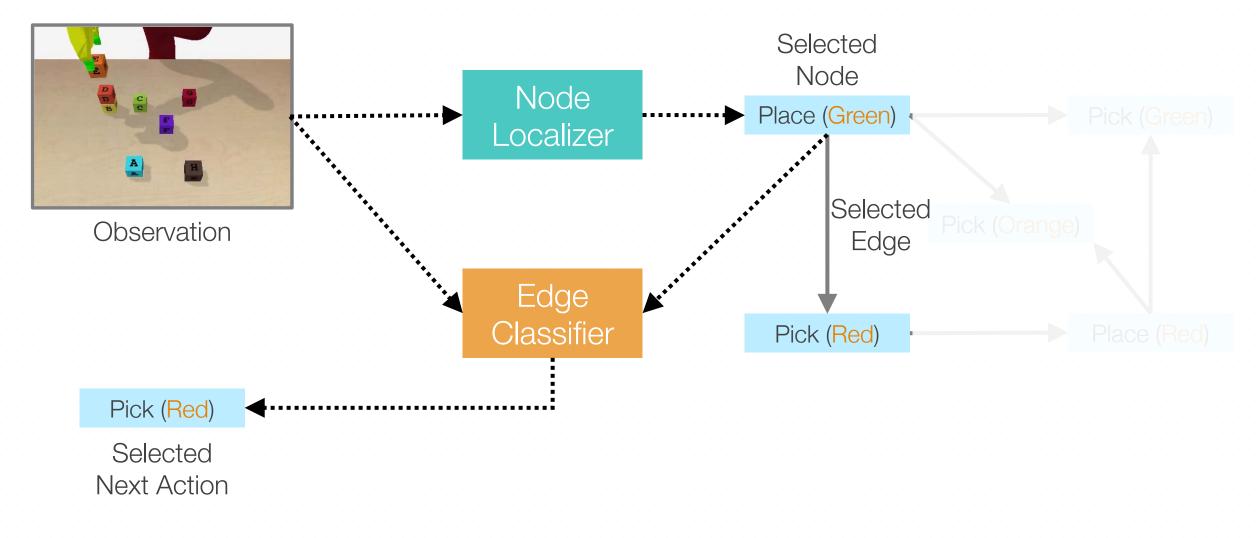
Neural Task Graphs (NTG): Representation

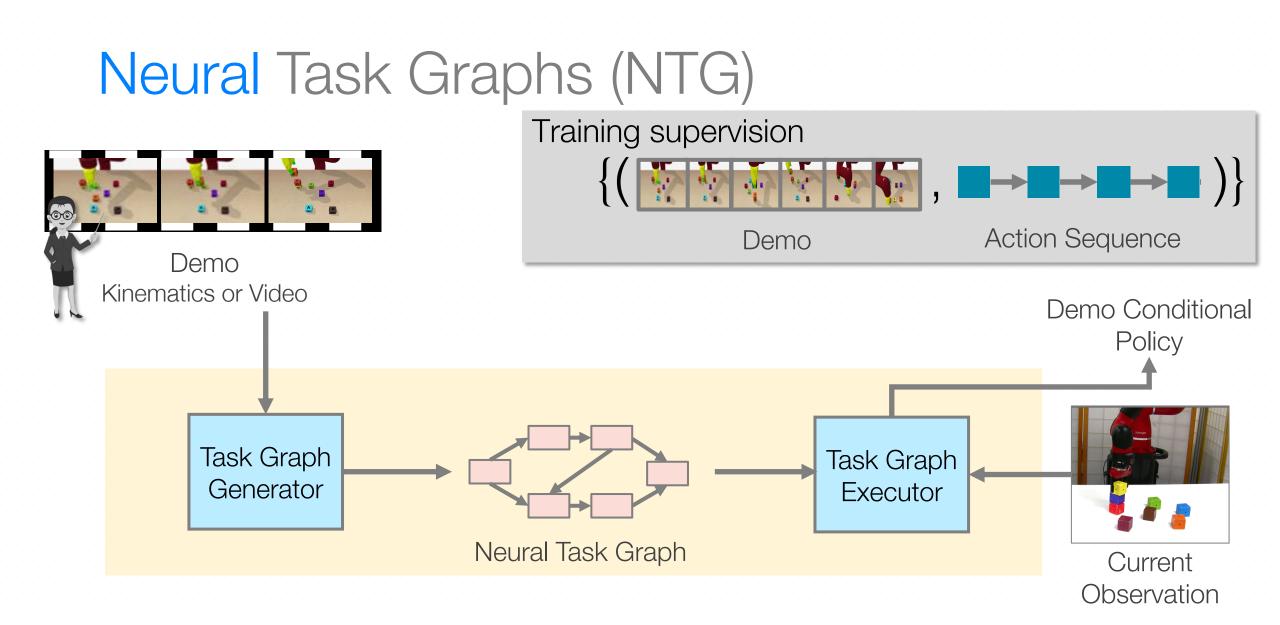
Task Graph

Conjugate Task Graph

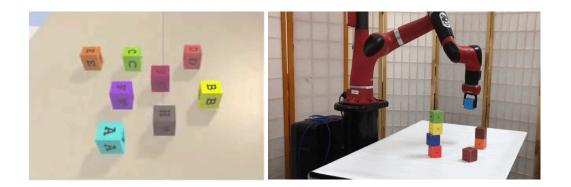


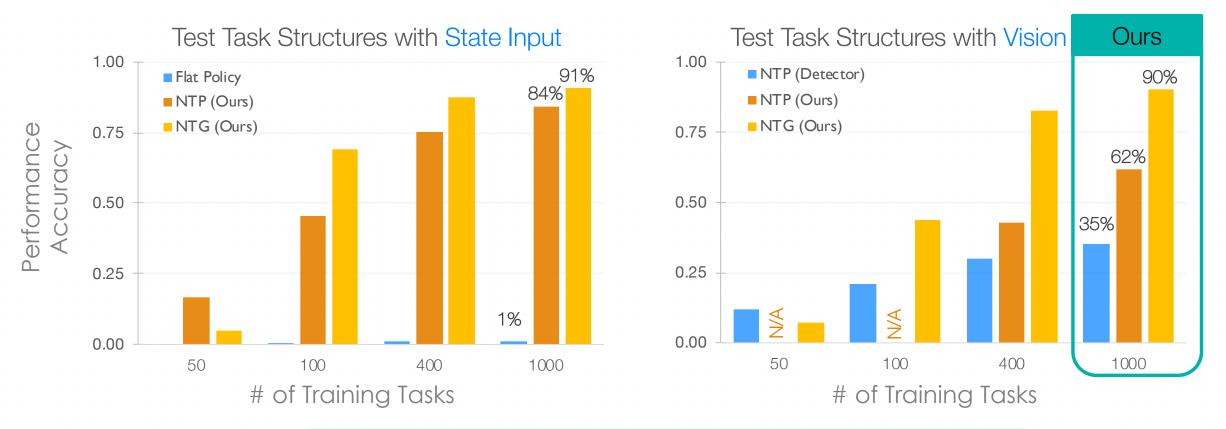
Neural Task Graphs (NTG): Execution





Neural Task Graph Results



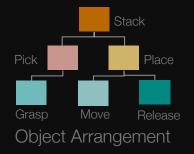


Weaker Supervision and Better Generalization

Compositional Planning: NTP and NTG

Object Sorting (NTP) Table Clean Up (NTP) Sequential Search and Prediction Al2 Thor with NTG

Task Structure Learning



CVPR 2019 (oral)

Compositional priors with modular structure enable Planning generalizable learning in hierarchical domains

Visuo-Motor

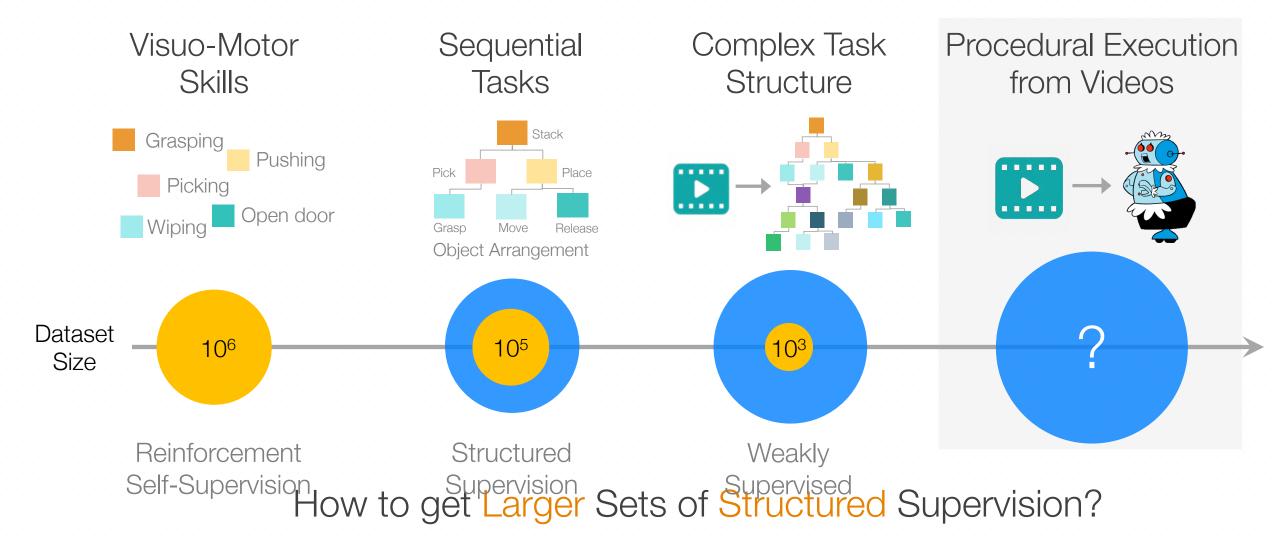
Skills

CoRL 2018, IROS 2019

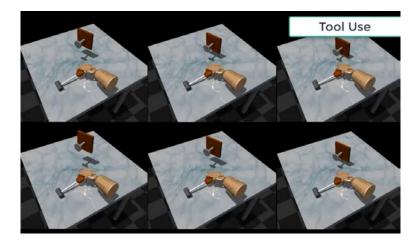
Data for **Robotics**

Compositional Planning

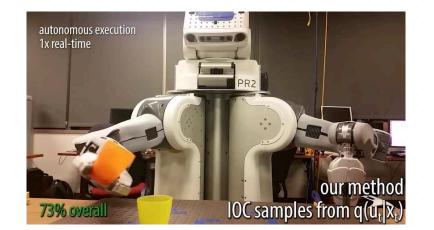
Task Structure Data for Robotics



Data for Robotics: Imitation + RL



Rajeswaran et al. (2018) 25 demonstrations ~ 10 Minutes

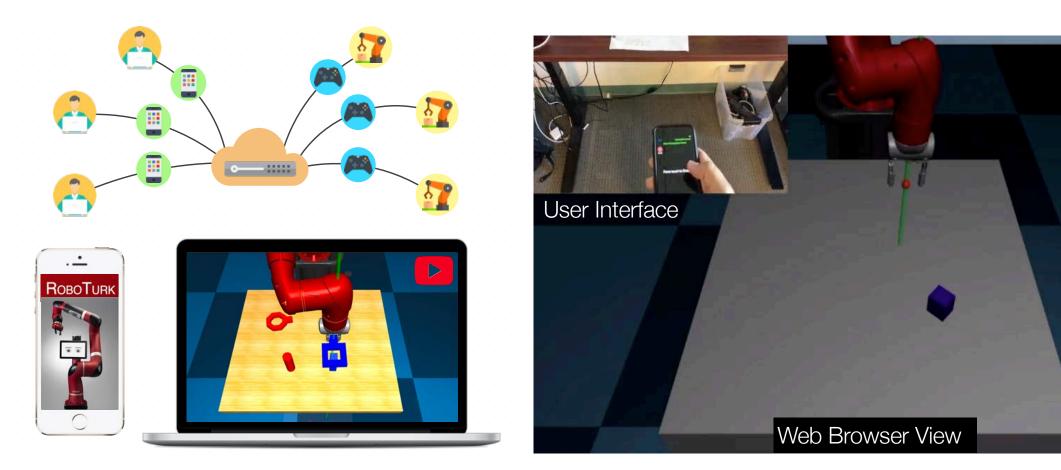


Finn et al. (2017) 30 demonstrations ~ 10 Minutes

Vecerik et al. (2017) 100 demonstrations ~ 30 Minutes

Large-scale supervision in robotics is difficult

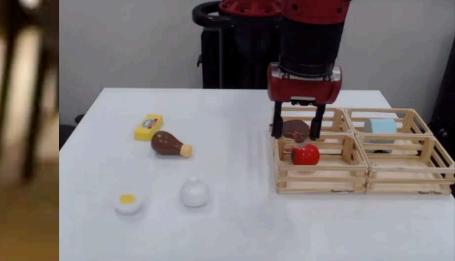
Expert needs to demonstrate, not label



+ Scales easily with commodity hardware+ Natural 6-DoF Free Space Control

[CoRL '18, IROS 2019]

RoboTurk: Scaling Imitation with Cloud



RoboTurk: Imitation for everyone, everywhere

RoboTurk Pilot Datasets

Simulated Data

Real Robot Data

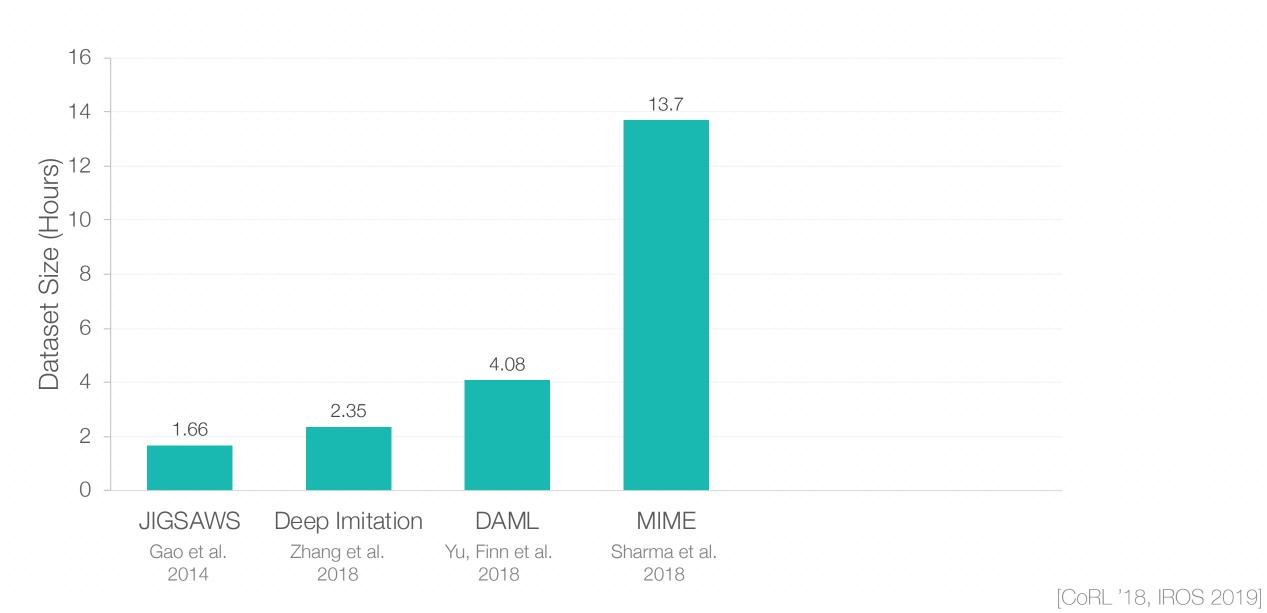
137.5 hours of demonstrations22 hours of total platform usage3 dexterous manipulation tasks3224 total attempted demos

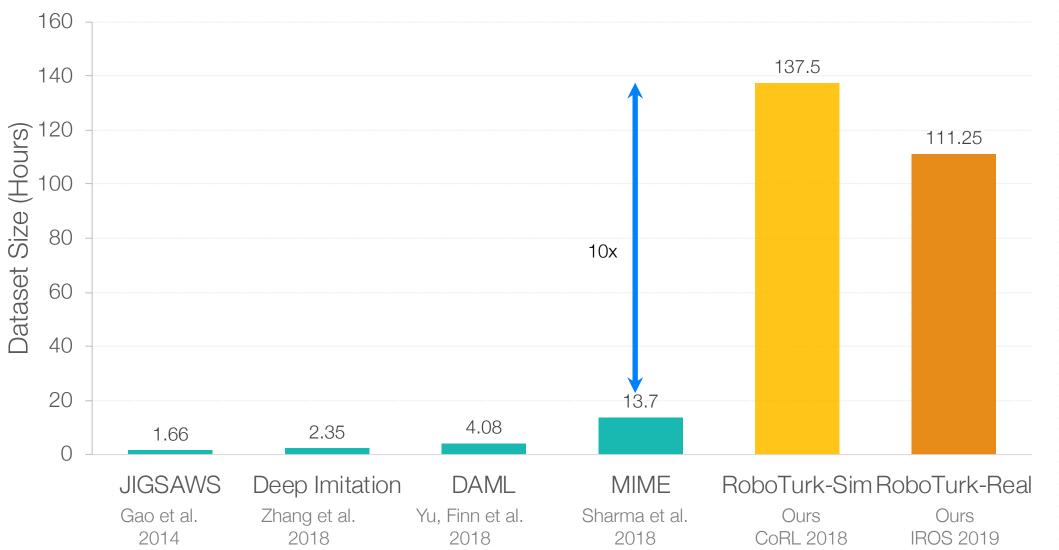
15 novice, remote users

111 hours of robot demos
1 week of data collection
3 dexterous manipulation tasks
2144 total demonstrations

54 non-expert users

[CoRL '18, IROS 2019]

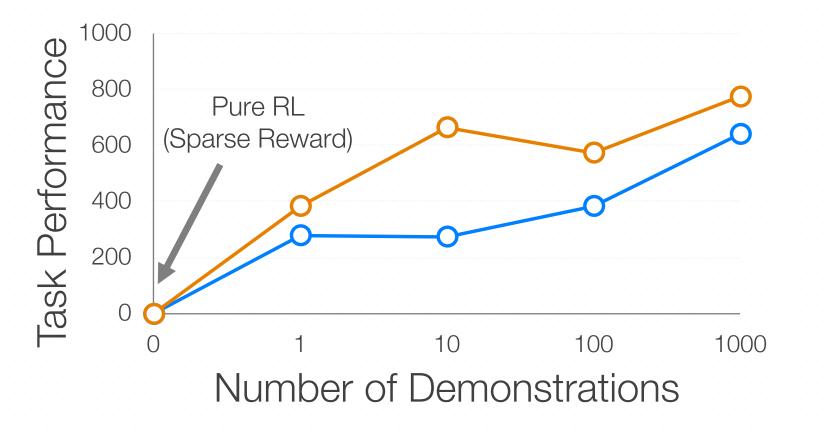




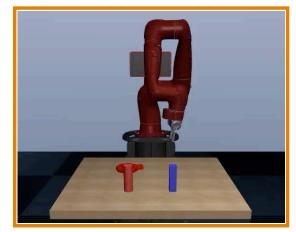
[CoRL '18, IROS 2019]

Imitation + RL

Task Performance vs. Number of Demonstrations

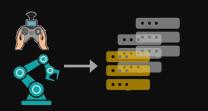


Trained Policy Rollout



Nut Assembly

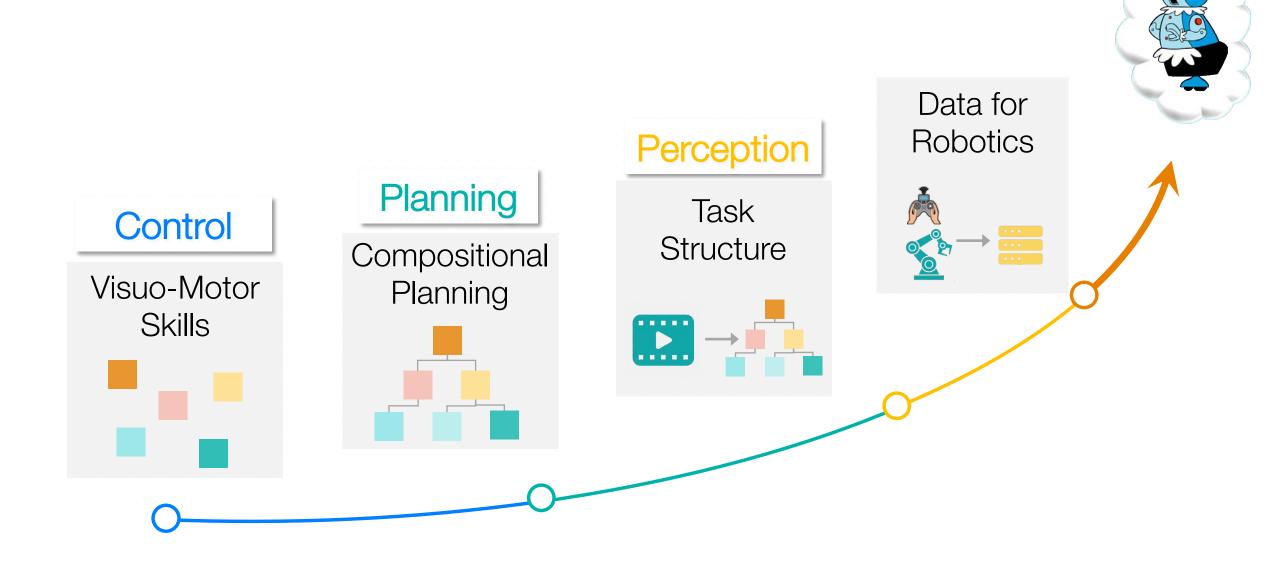
Bin Picking



CoRL 2018, IROS 2019

Data for Robotics

Structured supervision for Robotics through scalable crowdsourcing can empower robot learning in complex tasks.



Opportunity: Personal Robotics

Instructional Youtube Video How to make Meatball Pasta?

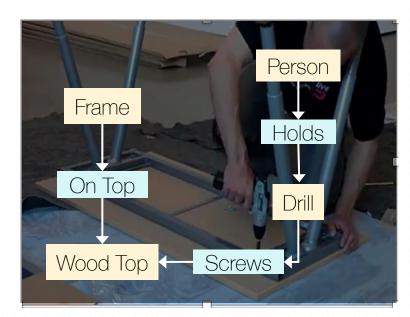
Where / How should Rosie start? What is the recipe? How to execute the plan? How to plan?

Reasoning for Physical Interaction Understanding Purpose

Ideal Tool During Training Task-Based Tool Adaptation During Execution

Grounding: So many ways to "make eggs"





Higher-Order Semantics

What makes an object a hammer?

State Change: Breaking Eggs

- Perception for Physical Interaction
- Reasoning through Learned Dynamics
- Transfer Learning with Formal Guarantees
- Continual Skill Adaptation & Accumulation

Learning with Structured Inductive Bias and Priors

- Efficiency and Generalization
- Combine: Domain Expertise + Data-Driven Methods



garg@cs.toronto.edu

@Animesh_Garg

Animesh Garg

