Intro to Deep Learning

Nick Locascio

— — / N \ :‘f
J = ‘ = -1 Y, » _A \\/\;«"f \\<//f \\)/" b :_,:_“._"
0.y 1601 fo/ "0/ e




2016: year of deep learning

2016: The Year That Deep Learning Took Over the Internet

WIRED - Dec 25, 2016

The project is still in the early stages, but it hints at the widespread impact of deep
learning over past year. In 2016, this very old but newly ...
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an the same type of technology Facebool
takes on uses to recognize faces also recognize S Suc [g ea
- particles? People didn't think this would happen for at least 10 years; it's a sign of how far
phy5|cs artificial intelligence has come.
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Kristen Stewart co-authored a paper on style
transfer and the Al community lost its mind

John Mannes |@JohnMannes
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Deep Learning Success

- Image Classification
Machine Translation
Speech Recognition
Speech Synthesis
Game Playing

grand prix motorcycle racing skijoring

... and many, many more
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Deep Learning Success

- Image Classification
Machine Translation
Speech Recognition
Speech Synthesis
Game Playing

... and many, many more

ILSVRC top-5 error on ImageNet
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Krizhevsky, Sutskever, Hinton 2012

MIT 6.5191 | Intro to Deep Learning | IAP 2017



Deep Learning Success

Image Classification

- Machine Translation
Speech Recognition
Speech Synthesis
Game Playing

Encoder

... and many, many more
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Deep Learning Success
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... and many, many more

MIT 6.5191 | Intro to Deep Learning | IAP 2017



Deep Learning Success
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... and many, many more
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Deep Learning Success

Image Classification
Machine Translation
Speech Recognition
Speech Synthesis

- Game Playing

... and many, many more



Deep Learning Success

Image Classification
Machine Translation
Speech Recognition
Speech Synthesis

- Game Playing

... and many, many more



6.S191 Goals

Fundamentals

Practical skills

Up to speed on current state of the field

Foster an open and collaborative deep learning community within MIT

HownNn -

Knowledge, intuition, know-how, and community to do deep learning research
and development.
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Class Information

e 1 week, 5 sessions
e P/F, 3 credits

e 2 TensorFlow Tutorials
o In-class Monday + Tuesday

e 1 Assignment: (more info in a few slides)
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Typical Schedule

e 10:30am-11:15am Lecture #1

e T11:15am-12:00pm Lecture #2

e 12:00pm-12:30pm Coffee Break

e 12:30pm-1:30pm Tutorial / Proposal Time
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Assignment Information

e 1 Assignment, 2 options:
o Present a novel deep learning research idea or application
o OR
o Write a 1-page review of a deep learning paper
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Option 1: Novel Proposal

Proposal Presentation

Groups of 3 or 4

Present a novel deep learning research idea or application

1 slide, T minute

List of example proposals on website: introtodeeplearning.com
Presentations on Friday

Submit groups by Wednesday 5pm to be eligible

Submit slide by Thursday 9pm to be eligible
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http://introtodeeplearning.com/project

Option 2: Paper Review

e Write a 1-page review of a deep learning paper
m Suggested papers listed on website introtodeeplearning.com
s  We will read + grade based on clarity of writing and technical
communication of main ideas.
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http://introtodeeplearning.com/project

Class Support

Piazza: https://piazza.com/class/iwmlwep2fnd5uu
Course Website: introtodeeplearning.com

Lecture slides: introtodeeplearning.com/schedule
Email us: introtodeeplearning-staff@mit.edu

OH by request
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https://piazza.com/class/iwmlwep2fnd5uu
http://introtodeeplearning.com
http://introtodeeplearning.com/schedule
mailto:introtodeeplearning-staff@mit.edu
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Our Fantastic Sponsors!
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Why Deep Learning and why now?



Why Deep Learning?

e Hand-Engineered Features vs. Learned features

‘e

disambiguation
pages
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Why Now?

1. Large Datasets
2. GPU Hardware Advances + Price Decreases
3. Improved Techniques

LSTM Memory Cell

| § : |
5 E T
1

Inception 7a

*Going Deeper with Convelutians, [C. Szegedy et al, CVPR 2015]
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Fundamentals of Deep Learning



The Perceptron

1. Invented in 1954 by Frank Rosenblatt
2. Inspired by neurobiology
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The Perceptron

inputs weights sum non-linearity

bias



Perceptron Forward Pass

output =



Perceptron Forward Pass

weights sum
N
| w
output = E T * W
| w
i=0 !
w, L




Perceptron Forward Pass

weights sum

N
output = (Z x; % w;) + b
i=0




Perceptron Forward Pass

N
output = g((z x; * w;) + b)
i=0

weights

sum

non-linearity



Perceptron Forward Pass

output = g(XW + b)

X =x0.21,...7,

W = wy,wy,...w,

weights

sum

non-linearity



Perceptron Forward Pass

el

output = g(XW + b)

X =x0.21,...7,

W = wy,wy,...w,

weights

sum

non-linearity



Sigmoid Activation

output = g(XW + b)

weights

sum

non-linearity



Common Activation Functions

Sigmoid TanH RelLU
12 10
1.0 1 8 0 for z<0
fz) =
08 A z for z>0
0.6
4
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0.2 2
0.0 0
-0.2 -15 -2
% 4 -2 0 2 4 6 "6 -4 -2 0 2 4 g6 5 4 -2 0 2
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Importance of Activation Functions

e Activation functions add non-linearity to our network’s function
e Most real-world problems + data are non-linear

A B
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Perceptron Forward Pass

output = g(XW + b)

weights

sum

non-linearity



Perceptron Forward Pass

output = ¢g(

weights sum non-linearity

(2*0.1) +

(3*0.5) + 05\‘
( 1% 5) 2.5 L 0 output
-1*2. + —™

(5%0.2) +

(1%3.0)



Perceptron Forward Pass

Output — 9(32) — 5(32) weights sum non-linearity

1 %

= = 0.96

(14 e32) "-5\‘
2.5




How do we build neural networks
with perceptrons?



Perceptron Diagram Simplified

weights

sum

non-linearity



Perceptron Diagram Simplified



Multi-Output Perceptron

output layer




Multi-Layer Perceptron (MLP)

input
layer

hidden
layer




Multi-Layer Perceptron (MLP)




Deep Neural Network

Input
layer




Applying Neural Networks



Example Problem: Will my Flight be Delayed?

+eDELT
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Example Problem: Will my Flight be Delayed?

Temperature: -20 F

Wind Speed: 45 mph

SeDELL
,.DELAYED

K *DELAYED




Example Problem: Will my Flight be Delayed?

[-20, 45]

+eDELT
..pELAYED

**sDELAYED




Example Problem: Will my Flight be Delayed?

[-20, 45]
|

seDELT

ot DELAYED
eeDELAYED
««sDELAYED



Example Problem: Will my Flight be Delayed?

| o Predicted: 0.05
[-20, 45]

SeDELL
= DELAYED

—_— . =DELAYED
100 ¢ «+«DELAYED




Example Problem: Will my Flight be Delayed?

Predicted: 0.05

[-20, 45]
Actual: 1

SeDELL
= DELAYED

—_— . =DELAYED
100 ¢ «+«DELAYED




Quantifying Loss

|
[-20, 45]

loss(f(z'");0),y"))

Predicted Actual



Total Loss

Input Predicted Actual
[ [ [
[-20, 45], 0.05 1
[80, 0], a 0.02 0
[4, 19], 0.96 1
[45, 60], 0.35 1
] ] ]
total loss := J(0 = E loss(f(x;0), y"))

Predicted Actual



Total Loss

Input Predicted Actual
[ [ [
[-20, 45], 0.05 1
[80, 0], a 0.02 0
[4, 19], 0.96 1
[45, 60], 0.35 1
] ] ]
total loss := J(0 = E loss(f(x;0), y"))

Predicted Actual



Binary Cross Entropy Loss

Input Predicted Actual
[

[-20, 45], 0.05 [1

[80, 0], Q 0.02 0

[4, 15], 0.96 1

[45, 60], 0.35 1

] ] ]

| X
cross_entropy (6 ﬁz Nog(f(z:0)) + (1 — yNlog(1 — f(=;0)))

Actual Predicted Actual Predicted



Mean Squared Error (MSE) Loss

Input
[

[-20, 45],

[80, 0],
[4, 15],
[45, 60],
]

MSE(¢

|
)=y 2

())?

Predicted

Actual

]

Predicted Actual
[ [
10 40
45 42
100 110
15 55

]



Training Neural Networks



Training Neural Networks: Objective

ar gy mm— Z loss( f y)



Training Neural Networks: Objective

ar gy mm— Z loss( f y)

1) .

loss function



Training Neural Networks: Objective

ar gy mmi\—r Z loss( f y)

W
0 =W, Wr. W,
J ( 9 )/ 1 2



Loss is a function of the model’'s parameters

J(0)



How to minimize loss?

Start at random point \

J(6) +



How to minimize loss?

. (6)

Compute: W \

J(0)



How to minimize loss?

Move in direction opposite

of gradient to new point \

J(0)



How to minimize loss?

Move in direction opposite

of gradient to new point \

J(0)



How to minimize loss?

Repeat!

J(0)



This is called Stochastic Gradient Descent (SGD)

Repeat!

J(0)



Stochastic Gradient Descent (SGD)

e Initialize ® randomly
e For N Epochs

o  For each training example (x, y):

m Compute Loss Gradient: _8,](9)
00
m Update 6 with update rule:
0.J(0)
0:=60—n——-=
06
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Stochastic Gradient Descent (SGD)

e Initialize ® randomly
e For N Epochs

o  For each training example (x, y):

8. (6)

m Compute Loss Gradient: —>7

00
m Update 6 with update rule:

0J (6
6‘::9—77—8‘(9)
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Stochastic Gradient Descent (SGD)

e Initialize ® randomly
e For N Epochs

o  For each training example (x, y):

m Compute Loss Gradient: _8,](9)
00
m Update 6 with update rule:
0.J(6)

e How to Compute Gradient?
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Calculating the Gradient: Backpropagation
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Calculating the Gradient: Backpropagation

oW,
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Calculating the Gradient: Backpropagation

Apply the chain rule

g

aJ(0)
oWy
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Calculating the Gradient: Backpropagation

0

Apply the chain rule

J(©)

0. (6) 6](9)

8 Wg 800
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Calculating the Gradient: Backpropagation

0

Apply the chain rule

J(©)

0J(0) 8J(f9) 9o,
oW B dog oW
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Calculating the Gradient: Backpropagation

oW,
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Calculating the Gradient: Backpropagation

Apply the chain rule

~
0. (6)

oW,
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Calculating the Gradient: Backpropagation

0

Apply the chain rule

J(©)

0.J(0) aJ(a) _ Doy
8W1 B 80[] ahg
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Calculating the Gradient: Backpropagation

0

Apply the chain rule  Apply the chain rule

pd
2J(0) aJ(a) Do,

oW, _ doy . Ohq

J(©)
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Calculating the Gradient: Backpropagation

N

- J(©)
) 4

Apply the chain rule  Apply the chain rule

/ v
9J(6) _ 9J(6) oy

aWI - 80[] ah[] i 8W1
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Training Neural Networks In Practice



Loss function can be difficult to optimize
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Loss function can be difficult to optimize

9.7 ()
00

Update Rule: 0:=0-—n



Loss function can be difficult to optimize

How to Choose Learning Rate?

o

Update Rule: 0:=0-— WW



Learning Rate & Optimization

e Small Learning Rate

J(w)

Small learning rate: Many iterations
until convergence and trapping in
local minima.



Learning Rate & Optimization

e Large learning rate

J(w)

Z

w

Large learning rate: Overshooting.



How to deal with this?

1. Try lots of different learning rates to see what is ‘just right’
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How to deal with this?

1. Try lots of different learning rates to see what is ‘just right’
2. Do something smarter
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How to deal with this?

1. Try lots of different learning rates to see what is ‘just right’
2. Do something smarter : Adaptive Learning Rate
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Adaptive Learning Rate

e Learning rate is no longer fixed

e (Can be made larger or smaller depending on:
o how large gradient is
o how fast learning is happening
o size of particular weights
o etc
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Adaptive Learning Rate Algorithms

ADAM
Momentum
NAG
Adagrad
Adadelta
RMSProp

For details: check out http://sebastianruder.com/optimizing-gradient-descent/
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http://sebastianruder.com/optimizing-gradient-descent/

Escaping Saddle Points

—_— SGD

- Momentum
= NAG

—  Adagrad
Adadelta
Rmsprop

AT 7
Dy I
WI
%, 9::":‘?"?"?’::’:"%
L
% 4’“’%*@’

1.0
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Escaping Saddle Points

— 5GD

— Momentum

—  NAG
—  Adagrad

Adadelta
— Rmsprop

s
PR

I
i
nq
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Training Neural Networks In Practice 2:
MiniBatches



Why is it Stochastic Gradient Descent?

e Initialize 6 randomly onl fmate of
nly an estimate o

e For N Epochs true gradient!
o  For each training example (x, y): /
m Compute Loss Gradient: w
00
m Update 6 with update rule:
0.J(0)
§ =0 n
00
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Minibatches Reduce Gradient Variance

e Initialize ® randomly More accurate
e ForN Epochs estimate!
o  For each training batch {(x0, y0), ..., (x, yp)} /

B
m Compute Loss Gradient: 0.J(0) _ lz 0Ji(0)
06 B E_ 00

m Update 6 with update rule:

0.J (6
0 = 6‘—77—859)
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Advantages of Minibatches

e More accurate estimation of gradient

O  Smoother convergence
o Allows for larger learning rates

e Minibatches lead to fast training!
o Can parallelize computation + achieve significant speed increases on GPU's
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Training Neural Networks In Practice 3:
Fighting Overfitting



The Problem of Overfitting

Underfitting — Overfitting
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Regularization Techniques

1. Dropout

2. Early Stopping

3. Weight Regularization
4. ..many more
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Regularization |: Dropout

e During training, randomly set some activations to O

Input hidden output
layer layers layer

><“>< ><a
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Regularization |: Dropout

e During training, randomly set some activations to O

Input hidden output
layer layers layer

lo/ o .
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Regularization |: Dropout

e During training, randomly set some activations to O
o Typically ‘drop’ 50% of activations in layer
o Forces network to not rely on any 1 node

Input hidden output
layer layers layer

lo/ o .
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Regularization |: Dropout

e During training, randomly set some activations to O
o Typically ‘drop’ 50% of activations in layer
o Forces network to not rely on any 1 node

Input hidden output
layer layers layer

><”>< %
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Regularization II: Early Stopping

Don’t give the network time to overfit

Epoch 15:
Epoch 16:
Epoch 17:
Epoch 18:
Epoch 19:
Epoch 20:

Train: 85% Validation: 80%
Train: 87% Validation: 82%
Train: 90% Validation: 85%
Train: 95% Validation: 83%
Train: 97% Validation: 78%
Train: 98% Validation: 75%

MIT 6.5191 | Intro to Deep Learning | IAP 2017



Regularization II: Early Stopping

Don’t give the network time to overfit

Epoch 15:
Epoch 16:
Epoch 17:
Epoch 18:
Epoch 19:
Epoch 20:

Train: 85% Validation: 80%

Train: 87% Validation: 82% /
Train: 90% Validation: 85%

Train: 95% Validation: 83%

Train: 97% Validation: 78%
Train: 98% Validation: 75%

Stop here!
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Regqularization |I: Early Stopping

Stop here!

Training Set Accurac

>

Accuracy

Qverfitting

Test Set Accuracy Early Stopping
:  Epoch




Regularization |ll: Weight Regularization

e Large weights typically mean model is overfitting
e Add the size of the weights to our loss function
e Perform well on task + keep weights small
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Regularization |ll: Weight Regularization

e Large weights typically mean model is overfitting
e Add the size of the weights to our loss function
e Perform well on task + keep weights small

|
arg, min 7 Zf: loss(f(z'");9), y"))

MIT 6.5191 | Intro to Deep Learning | IAP 2017



Regularization |ll: Weight Regularization

e Large weights typically mean model is overfitting
e Add the size of the weights to our loss function
e Perform well on task + keep weights small

argymin — Z loss(f(z); 6 ) +A Z
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Regularization lll: Weight Regularization

e Large weights typically mean model is overfitting
e Add the size of the weights to our loss function
e Perform well on task + keep weights small

argymin — Z loss(f(z); 6 ) +A Z

1—,-’
J(0)
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Core Fundamentals Review

Perceptron Classifier

Stacking Perceptrons to form neural networks

How to formulate problems with neural networks

Train neural networks with backpropagation

Techniques for improving training of deep neural networks

hidden output
layers layer

Exgxe
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Questions?



