Intro to Deep Learning

Nick Locascio

— — / N \ :‘f
J = ‘ = -1 Y, » _A \\/\;«"f \\<//f \\)/" b :_,:_“._"
0.y 1601 fo/ "0/ e

2016: year of deep learning

2016: The Year That Deep Learning Took Over the Internet

WIRED - Dec 25, 2016

The project is still in the early stages, but it hints at the widespread impact of deep
learning over past year. In 2016, this very old but newly ...

News Videos Quizzes Tasty DIY More~ Get Our Ney
....a.a.CJ.: -
S e
ul e, m ﬁ ﬂ
- 12/081E | By Mally Dimataad
Deep learning L 'Irhés IshVihg_A Ig:on:puter Winning At Go
an the same type of technology Facebool
takes on uses to recognize faces also recognize S Suc [g ea
- particles? People didn't think this would happen for at least 10 years; it's a sign of how far
phy5|cs artificial intelligence has come.

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Kristen Stewart co-authored a paper on style
transfer and the Al community lost its mind

John Mannes |@JohnMannes

F]#]in O

Deep Learning Success

- Image Classification
Machine Translation
Speech Recognition
Speech Synthesis
Game Playing

grand prix motorcycle racing skijoring

... and many, many more

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Deep Learning Success

- Image Classification
Machine Translation
Speech Recognition
Speech Synthesis
Game Playing

... and many, many more

ILSVRC top-5 error on ImageNet

225 -
15

Tl =

2010 2011 2012 2013 2014 Human ArXiv 2015

/ f

Better than

AlexNet humans

Krizhevsky, Sutskever, Hinton 2012

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Deep Learning Success

Image Classification

- Machine Translation
Speech Recognition
Speech Synthesis
Game Playing

Encoder

... and many, many more

Google
% Translate

€ |— & |/ € —* 83 |/ B4 |/ s |/ B

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Deep Learning Success

Image Classification irpu English _ Output
. . audio o text
Machine Translation EE IR e R R el @ @l @)
- TH ol |o||o||e||e| || |ef|e| |e| || |o|(]A
Speech Recogmtlon < |o|o||o|[o| |o|[o|[o| [o| o] o] [o]| |2
Speech Synthesis W 2l |o||o||o]| || |o| [e| [o] o] |e||®||o||c| - caT
. 13939000000000,
Game Playing gl o |o| o] |o||o]||e||e||e]| o] |e||o]| |*
O O] |C| @ |0 @ e @ ©® & O]z
e le)le)(e)(e)(e)e)le)le) @O

... and many, many more

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Deep Learning Success

Image Classification
MachineTranslation opit @ © 0O 9 00000000000 606

Speech Recognition HidN G 0000000000000 00 0,0

- Speech Synthesis / /

HN 2000000000000 000 00

Game Playing e /l / /l

Hilen s 0 0 0 O @20 0 © ©0 & @ 6 o)

N ANNNNN]

it ® © 0 000000000 OGOOGOO

@)
(@)
@]

... and many, many more

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Deep Learning Success

Image Classification
Machine Translation
Speech Recognition
Speech Synthesis

- Game Playing

... and many, many more

Deep Learning Success

Image Classification
Machine Translation
Speech Recognition
Speech Synthesis

- Game Playing

... and many, many more

6.S191 Goals

Fundamentals

Practical skills

Up to speed on current state of the field

Foster an open and collaborative deep learning community within MIT

HownNn -

Knowledge, intuition, know-how, and community to do deep learning research
and development.

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Class Information

e 1 week, 5 sessions
e P/F, 3 credits

e 2 TensorFlow Tutorials
o In-class Monday + Tuesday

e 1 Assignment: (more info in a few slides)

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Typical Schedule

e 10:30am-11:15am Lecture #1

e T11:15am-12:00pm Lecture #2

e 12:00pm-12:30pm Coffee Break

e 12:30pm-1:30pm Tutorial / Proposal Time

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Assignment Information

e 1 Assignment, 2 options:
o Present a novel deep learning research idea or application
o OR
o Write a 1-page review of a deep learning paper

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Option 1: Novel Proposal

Proposal Presentation

Groups of 3 or 4

Present a novel deep learning research idea or application

1 slide, T minute

List of example proposals on website: introtodeeplearning.com
Presentations on Friday

Submit groups by Wednesday 5pm to be eligible

Submit slide by Thursday 9pm to be eligible

MIT 6.5191 | Intro to Deep Learning | IAP 2017

http://introtodeeplearning.com/project

Option 2: Paper Review

e Write a 1-page review of a deep learning paper
m Suggested papers listed on website introtodeeplearning.com
s We will read + grade based on clarity of writing and technical
communication of main ideas.

MIT 6.5191 | Intro to Deep Learning | IAP 2017

http://introtodeeplearning.com/project

Class Support

Piazza: https://piazza.com/class/iwmlwep2fnd5uu
Course Website: introtodeeplearning.com

Lecture slides: introtodeeplearning.com/schedule
Email us: introtodeeplearning-staff@mit.edu

OH by request

MIT 6.5191 | Intro to Deep Learning | IAP 2017

https://piazza.com/class/iwmlwep2fnd5uu
http://introtodeeplearning.com
http://introtodeeplearning.com/schedule
mailto:introtodeeplearning-staff@mit.edu

Staff: Lecturers

AW

PP
Nick Locascio Harini Suresh Ishaan Victoria Dean Lex Fridman Yo Shavit
Lead Organizer Lead Organizer Gulrajani Co-Chair Co-Chair Co-Chair

Co-Chair

MIT 6.S191 | Intro to Deep Learning | IAP 2017

Staff: TA + Admin
A

v =" ’ .-_Jl_ .’.'4;:- 4
Eduardo Jackie Xu Wengong
Deleon TA Jin

Rue Park Anish
Marketing Atha[ye

Helen Zhou
TA

Vgl N

TA

Prafulla
Dhariwal
TA

Tianxiao
Shen
TA

” A

+

5

Alfredo

Yanez
TA

MIT 6.S191 | Intro to Deep Learning | IAP 2017

&

S

¢

L

!

Alex Lenail
TA

A

Hansa

Srinivasan
TA

t

Our Fantastic Sponsors!

G()if’;fgle @

NVIDIA.

O

EM Wateon amazon alexa

Why Deep Learning and why now?

Why Deep Learning?

e Hand-Engineered Features vs. Learned features

‘e

disambiguation
pages

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Why Now?

1. Large Datasets
2. GPU Hardware Advances + Price Decreases
3. Improved Techniques

LSTM Memory Cell

| § : |
5 E T
1

Inception 7a

*Going Deeper with Convelutians, [C. Szegedy et al, CVPR 2015]

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Fundamentals of Deep Learning

The Perceptron

1. Invented in 1954 by Frank Rosenblatt
2. Inspired by neurobiology

dendrhg&

e

{?\Q\ nucleus
\

axon
terminals

out

The Perceptron

inputs weights sum non-linearity

bias

Perceptron Forward Pass

output =

Perceptron Forward Pass

weights sum
N
| w
output = E T * W
| w
i=0 !
w, L

Perceptron Forward Pass

weights sum

N
output = (Z x; % w;) + b
i=0

Perceptron Forward Pass

N
output = g((z x; * w;) + b)
i=0

weights

sum

non-linearity

Perceptron Forward Pass

output = g(XW + b)

X =x0.21,...7,

W = wy,wy,...w,

weights

sum

non-linearity

Perceptron Forward Pass

el

output = g(XW + b)

X =x0.21,...7,

W = wy,wy,...w,

weights

sum

non-linearity

Sigmoid Activation

output = g(XW + b)

weights

sum

non-linearity

Common Activation Functions

Sigmoid TanH RelLU
12 10
1.0 1 8 0 for z<0
fz) =
08 A z for z>0
0.6
4
0.4
0.2 2
0.0 0
-0.2 -15 -2
% 4 -2 0 2 4 6 "6 -4 -2 0 2 4 g6 5 4 -2 0 2

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Importance of Activation Functions

e Activation functions add non-linearity to our network’s function
e Most real-world problems + data are non-linear

A B
@
® ® @
e © AT W,
ra I_r' e,
L ® 0,00
Y ‘a® g
® @ ® - .. @/ ¢
= ® @

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Perceptron Forward Pass

output = g(XW + b)

weights

sum

non-linearity

Perceptron Forward Pass

output = ¢g(

weights sum non-linearity

(2*0.1) +

(3*0.5) + 05\‘
(1% 5) 2.5 L 0 output
-1*2. + —™

(5%0.2) +

(1%3.0)

Perceptron Forward Pass

Output — 9(32) — 5(32) weights sum non-linearity

1 %

= = 0.96

(14 e32) "-5\‘
2.5

How do we build neural networks
with perceptrons?

Perceptron Diagram Simplified

weights

sum

non-linearity

Perceptron Diagram Simplified

Multi-Output Perceptron

output layer

Multi-Layer Perceptron (MLP)

input
layer

hidden
layer

Multi-Layer Perceptron (MLP)

Deep Neural Network

Input
layer

Applying Neural Networks

Example Problem: Will my Flight be Delayed?

+eDELT
..pELAYED

— ~~SSpELAYED
’ ««DELAYED

Example Problem: Will my Flight be Delayed?

Temperature: -20 F

Wind Speed: 45 mph

SeDELL
,.DELAYED

K *DELAYED

Example Problem: Will my Flight be Delayed?

[-20, 45]

+eDELT
..pELAYED

**sDELAYED

Example Problem: Will my Flight be Delayed?

[-20, 45]
|

seDELT

ot DELAYED
eeDELAYED
««sDELAYED

Example Problem: Will my Flight be Delayed?

| o Predicted: 0.05
[-20, 45]

SeDELL
= DELAYED

—_— . =DELAYED
100 ¢ «+«DELAYED

Example Problem: Will my Flight be Delayed?

Predicted: 0.05

[-20, 45]
Actual: 1

SeDELL
= DELAYED

—_— . =DELAYED
100 ¢ «+«DELAYED

Quantifying Loss

|
[-20, 45]

loss(f(z'");0),y"))

Predicted Actual

Total Loss

Input Predicted Actual
[[[
[-20, 45], 0.05 1
[80, 0], a 0.02 0
[4, 19], 0.96 1
[45, 60], 0.35 1
]]]
total loss := J(0 = E loss(f(x;0), y"))

Predicted Actual

Total Loss

Input Predicted Actual
[[[
[-20, 45], 0.05 1
[80, 0], a 0.02 0
[4, 19], 0.96 1
[45, 60], 0.35 1
]]]
total loss := J(0 = E loss(f(x;0), y"))

Predicted Actual

Binary Cross Entropy Loss

Input Predicted Actual
[

[-20, 45], 0.05 [1

[80, 0], Q 0.02 0

[4, 15], 0.96 1

[45, 60], 0.35 1

]]]

| X
cross_entropy (6 ﬁz Nog(f(z:0)) + (1 — yNlog(1 — f(=;0)))

Actual Predicted Actual Predicted

Mean Squared Error (MSE) Loss

Input
[

[-20, 45],

[80, 0],
[4, 15],
[45, 60],
]

MSE(¢

|
)=y 2

())?

Predicted

Actual

]

Predicted Actual
[[
10 40
45 42
100 110
15 55

]

Training Neural Networks

Training Neural Networks: Objective

ar gy mm— Z loss(f y)

Training Neural Networks: Objective

ar gy mm— Z loss(f y)

1) .

loss function

Training Neural Networks: Objective

ar gy mmi\—r Z loss(f y)

W
0 =W, Wr. W,
J (9)/ 1 2

Loss is a function of the model’'s parameters

J(0)

How to minimize loss?

Start at random point \

J(6) +

How to minimize loss?

. (6)

Compute: W \

J(0)

How to minimize loss?

Move in direction opposite

of gradient to new point \

J(0)

How to minimize loss?

Move in direction opposite

of gradient to new point \

J(0)

How to minimize loss?

Repeat!

J(0)

This is called Stochastic Gradient Descent (SGD)

Repeat!

J(0)

Stochastic Gradient Descent (SGD)

e Initialize ® randomly
e For N Epochs

o For each training example (x, y):

m Compute Loss Gradient: _8,](9)
00
m Update 6 with update rule:
0.J(0)
0:=60—n——-=
06

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Stochastic Gradient Descent (SGD)

e Initialize ® randomly
e For N Epochs

o For each training example (x, y):

8. (6)

m Compute Loss Gradient: —>7

00
m Update 6 with update rule:

0J (6
6‘::9—77—8‘(9)

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Stochastic Gradient Descent (SGD)

e Initialize ® randomly
e For N Epochs

o For each training example (x, y):

m Compute Loss Gradient: _8,](9)
00
m Update 6 with update rule:
0.J(6)

e How to Compute Gradient?
MIT 6.5191 | Intro to Deep Learning | IAP 2017

Calculating the Gradient: Backpropagation

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Calculating the Gradient: Backpropagation

oW,

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Calculating the Gradient: Backpropagation

Apply the chain rule

g

aJ(0)
oWy

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Calculating the Gradient: Backpropagation

0

Apply the chain rule

J(©)

0. (6) 6](9)

8 Wg 800

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Calculating the Gradient: Backpropagation

0

Apply the chain rule

J(©)

0J(0) 8J(f9) 9o,
oW B dog oW

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Calculating the Gradient: Backpropagation

oW,

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Calculating the Gradient: Backpropagation

Apply the chain rule

~
0. (6)

oW,

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Calculating the Gradient: Backpropagation

0

Apply the chain rule

J(©)

0.J(0) aJ(a) _ Doy
8W1 B 80[] ahg

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Calculating the Gradient: Backpropagation

0

Apply the chain rule Apply the chain rule

pd
2J(0) aJ(a) Do,

oW, _ doy . Ohq

J(©)

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Calculating the Gradient: Backpropagation

N

- J(©)
) 4

Apply the chain rule Apply the chain rule

/ v
9J(6) _ 9J(6) oy

aWI - 80[] ah[] i 8W1

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Training Neural Networks In Practice

Loss function can be difficult to optimize

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Loss function can be difficult to optimize

9.7 ()
00

Update Rule: 0:=0-—n

Loss function can be difficult to optimize

How to Choose Learning Rate?

o

Update Rule: 0:=0-— WW

Learning Rate & Optimization

e Small Learning Rate

J(w)

Small learning rate: Many iterations
until convergence and trapping in
local minima.

Learning Rate & Optimization

e Large learning rate

J(w)

Z

w

Large learning rate: Overshooting.

How to deal with this?

1. Try lots of different learning rates to see what is ‘just right’

MIT 6.5191 | Intro to Deep Learning | IAP 2017

How to deal with this?

1. Try lots of different learning rates to see what is ‘just right’
2. Do something smarter

MIT 6.5191 | Intro to Deep Learning | IAP 2017

How to deal with this?

1. Try lots of different learning rates to see what is ‘just right’
2. Do something smarter : Adaptive Learning Rate

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Adaptive Learning Rate

e Learning rate is no longer fixed

e (Can be made larger or smaller depending on:
o how large gradient is
o how fast learning is happening
o size of particular weights
o etc

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Adaptive Learning Rate Algorithms

ADAM
Momentum
NAG
Adagrad
Adadelta
RMSProp

For details: check out http://sebastianruder.com/optimizing-gradient-descent/

MIT 6.5191 | Intro to Deep Learning | IAP 2017

http://sebastianruder.com/optimizing-gradient-descent/

Escaping Saddle Points

—_— SGD

- Momentum
= NAG

— Adagrad
Adadelta
Rmsprop

AT 7
Dy I
WI
%, 9::":‘?"?"?’::’:"%
L
% 4’“’%*@’

1.0

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Escaping Saddle Points

— 5GD

— Momentum

— NAG
— Adagrad

Adadelta
— Rmsprop

s
PR

I
i
nq

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Training Neural Networks In Practice 2:
MiniBatches

Why is it Stochastic Gradient Descent?

e Initialize 6 randomly onl fmate of
nly an estimate o

e For N Epochs true gradient!
o For each training example (x, y): /
m Compute Loss Gradient: w
00
m Update 6 with update rule:
0.J(0)
§ =0 n
00

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Minibatches Reduce Gradient Variance

e Initialize ® randomly More accurate
e ForN Epochs estimate!
o For each training batch {(x0, y0), ..., (x, yp)} /

B
m Compute Loss Gradient: 0.J(0) _ lz 0Ji(0)
06 B E_ 00

m Update 6 with update rule:

0.J (6
0 = 6‘—77—859)

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Advantages of Minibatches

e More accurate estimation of gradient

O Smoother convergence
o Allows for larger learning rates

e Minibatches lead to fast training!
o Can parallelize computation + achieve significant speed increases on GPU's

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Training Neural Networks In Practice 3:
Fighting Overfitting

The Problem of Overfitting

Underfitting — Overfitting

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regularization Techniques

1. Dropout

2. Early Stopping

3. Weight Regularization
4. ..many more

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regularization |: Dropout

e During training, randomly set some activations to O

Input hidden output
layer layers layer

><“>< ><a

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regularization |: Dropout

e During training, randomly set some activations to O

Input hidden output
layer layers layer

lo/ o .

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regularization |: Dropout

e During training, randomly set some activations to O
o Typically ‘drop’ 50% of activations in layer
o Forces network to not rely on any 1 node

Input hidden output
layer layers layer

lo/ o .

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regularization |: Dropout

e During training, randomly set some activations to O
o Typically ‘drop’ 50% of activations in layer
o Forces network to not rely on any 1 node

Input hidden output
layer layers layer

><”>< %

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regularization II: Early Stopping

Don’t give the network time to overfit

Epoch 15:
Epoch 16:
Epoch 17:
Epoch 18:
Epoch 19:
Epoch 20:

Train: 85% Validation: 80%
Train: 87% Validation: 82%
Train: 90% Validation: 85%
Train: 95% Validation: 83%
Train: 97% Validation: 78%
Train: 98% Validation: 75%

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regularization II: Early Stopping

Don’t give the network time to overfit

Epoch 15:
Epoch 16:
Epoch 17:
Epoch 18:
Epoch 19:
Epoch 20:

Train: 85% Validation: 80%

Train: 87% Validation: 82% /
Train: 90% Validation: 85%

Train: 95% Validation: 83%

Train: 97% Validation: 78%
Train: 98% Validation: 75%

Stop here!

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regqularization |I: Early Stopping

Stop here!

Training Set Accurac

>

Accuracy

Qverfitting

Test Set Accuracy Early Stopping
: Epoch

Regularization |ll: Weight Regularization

e Large weights typically mean model is overfitting
e Add the size of the weights to our loss function
e Perform well on task + keep weights small

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regularization |ll: Weight Regularization

e Large weights typically mean model is overfitting
e Add the size of the weights to our loss function
e Perform well on task + keep weights small

|
arg, min 7 Zf: loss(f(z'");9), y"))

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regularization |ll: Weight Regularization

e Large weights typically mean model is overfitting
e Add the size of the weights to our loss function
e Perform well on task + keep weights small

argymin — Z loss(f(z); 6) +A Z

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Regularization lll: Weight Regularization

e Large weights typically mean model is overfitting
e Add the size of the weights to our loss function
e Perform well on task + keep weights small

argymin — Z loss(f(z); 6) +A Z

1—,-’
J(0)

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Core Fundamentals Review

Perceptron Classifier

Stacking Perceptrons to form neural networks

How to formulate problems with neural networks

Train neural networks with backpropagation

Techniques for improving training of deep neural networks

hidden output
layers layer

Exgxe

MIT 6.5191 | Intro to Deep Learning | IAP 2017

Questions?

