Sequence Modeling with Neural Networks

Harini Suresh
What is a sequence?

- “This morning I took the dog for a walk.”
- medical signals
- speech waveform
Successes of deep models

Machine translation

<table>
<thead>
<tr>
<th>Translation model</th>
<th>English > Spanish</th>
<th>English > French</th>
<th>English > Chinese</th>
<th>Spanish > English</th>
<th>French > English</th>
<th>Chinese > English</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation quality</td>
<td>6.0</td>
<td>5.5</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>perfect translation</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>human</td>
<td>6.0</td>
<td>5.5</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>neural (GNMT)</td>
<td>6.0</td>
<td>5.5</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>phrase-based (PBMT)</td>
<td>6.0</td>
<td>5.5</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Question Answering

Super Bowl 50 was an American football game to determine the champion of the National Football League (NFL) for the 2015 season. The American Football Conference (AFC) champion Denver Broncos defeated the National Football Conference (NFC) champion Carolina Panthers 24–10 to earn their third Super Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the San Francisco Bay Area at Santa Clara, California. As this was the 50th Super Bowl, the league emphasized the "golden anniversary" with various gold-themed initiatives, as well as temporarily suspending the tradition of naming each Super Bowl game with Roman numerals (under which the game would have been known as "Super Bowl L"), so that the logo could prominently feature the Arabic numerals 50.

Super Bowl 50 decided the NFL champion for what season?

Ground Truth Answers: 2015, the 2015 season, 2015

Prediction: 2015

Left:

Right:
https://rajpurkar.github.io/SQuAD-explorer/
Successes of deep models
a sequence modeling problem:
predict the next word
a sequence modeling problem

“This morning I took the dog for a walk.”
a sequence modeling problem

“This morning I took the dog for a walk.”

given these words
a sequence modeling problem

“This morning I took the dog for a walk.”

given these words predict what comes next?
idea: use a fixed window

“This morning I took the dog for a walk.”

given these 2 words, predict the next word
idea: use a fixed window

“This morning I took the dog for a walk.”

One hot feature vector indicates what each word is

[1 0 0 0 0 1 0 0 0]

prediction

given these 2 words, predict the next word
problem: we can’t model long-term dependencies

“In France, I had a great time and I learnt some of the _____ language.”

We need information from the far past and future to accurately guess the correct word.
idea: use entire sequence, as a set of counts

This morning I took the dog for a

[0 1 0 0 1 0 0 ... 0 0 1 1 0 0 0 1]

prediction

“bag of words”
problem: counts don’t preserve order
problem: counts don’t preserve order

“The food was good, not bad at all.”

vs

“The food was bad, not good at all.”
idea: use a really big fixed window

“This morning I took the dog for a walk.”

given these 7 words, predict the next word

[1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 ...]

morning I took the dog ...

prediction
problem: no parameter sharing

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\ldots
\end{bmatrix}
\]

each of these inputs has a separate parameter
problem: no parameter sharing

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\vdots
\end{bmatrix}
\]

each of these inputs has a separate parameter

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\vdots
\end{bmatrix}
\]

MIT 6.S191 | Intro to Deep Learning | IAP 2018
Problem: no parameter sharing

Each of these inputs has a separate parameter:

- **This:**

 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \ldots
 \end{bmatrix}
 \]

- **Morning:**

 \[
 \begin{bmatrix}
 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
 \ldots
 \end{bmatrix}
 \]

Things we learn about the sequence won't transfer if they appear at different points in the sequence.
to model sequences, we need:

1. to deal with variable-length sequences
2. to maintain sequence order
3. to keep track of long-term dependencies
4. to share parameters across the sequence
to model sequences, we need:

1. to deal with variable-length sequences
2. to maintain sequence order
3. to keep track of long-term dependencies
4. to share parameters across the sequence

let’s turn to recurrent neural networks.
example network:
example network:

let’s take a look at this one hidden unit

MIT 6.S191 | Intro to Deep Learning | IAP 2018
RNNS remember their previous state:

\[x_0 : \text{vector representing first word} \]
\[s_0 : \text{cell state at } t = 0 \text{ (some initialization)} \]
\[s_1 : \text{cell state at } t = 1 \]
\[s_1 = \tanh(Wx_0 + Us_0) \]

\(x_0 \): “it”

\(W, U \): weight matrices
RNNS remember their previous state:

\[s_1 : \text{cell state at } t = 1 \]
\[s_2 : \text{cell state at } t = 2 \]
\[s_2 = \tanh(W x_1 + U s_1) \]

\(x_1 : \) vector representing second word

\(x_1 : \) “was”

\(W, U : \) weight matrices
“unfolding” the RNN across time:

\[x_0 W s_0 U x_1 W s_1 U x_2 W s_2 U \ldots \]
“unfolding” the RNN across time:

\[x_0 W s_0 U x_1 W s_1 U x_2 W s_2 U \ldots \]

notice that we use the same parameters, \(W \) and \(U \)

MIT 6.S191 | Intro to Deep Learning | IAP 2018
“unfolding” the RNN across time:

\[x_0 W \rightarrow s_0 \rightarrow U \rightarrow x_1 \rightarrow s_1 \rightarrow U \rightarrow x_2 \rightarrow s_2 \rightarrow U \rightarrow \ldots \]

\[s_n \text{ can contain information from all past timesteps} \]
how do we **train** an RNN?
how do we train an RNN?

backpropagation!

(through time)
remember: **backpropagation**

1. **take the derivative** (gradient) of the loss with respect to each parameter

2. **shift parameters in the opposite direction** in order to minimize loss
we have a loss at each timestep:

(since we’re making a prediction at each timestep)
we have a **loss at each timestep**: (since we’re making a prediction at each timestep)
we sum the losses across time:

\[
\text{loss at time } t = J_t(\Theta)
\]

\[
\text{total loss } = J(\Theta) = \sum_t J_t(\Theta)
\]

\(\Theta\) = our parameters, like weights
what are our gradients?

we sum gradients across time for each parameter P:

$$\frac{\partial J}{\partial P} = \sum_{t} \frac{\partial J_t}{\partial P}$$
let’s try it out for W with the **chain rule**:

$$\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}$$
let’s try it out for W with the **chain rule**:

\[
\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}
\]

so let’s take a single timestep t.
let’s try it out for W with the **chain rule**:

\[
\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}
\]

so let’s take a single timestep t:

\[
\frac{\partial J_2}{\partial W}
\]

MIT 6.S191 | Intro to Deep Learning | IAP 2018
let’s try it out for W with the **chain rule**:

$$\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}$$

so let’s take a single timestep t:

$$\frac{\partial J_t}{\partial W} = \frac{\partial J_t}{\partial y_t}$$
let’s try it out for W with the **chain rule**:

$$J_0 \quad y_0 \quad V \quad s_0 \quad U \quad x_0$$

$$J_1 \quad y_1 \quad V \quad s_1 \quad U \quad x_1$$

$$J_2 \quad y_2 \quad V \quad s_2 \quad U \quad x_2$$

$\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}$

so let’s take a single timestep t:

$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2}$$
let’s try it out for W with the **chain rule**:

\[
\begin{align*}
\frac{\partial J}{\partial W} &= \sum_t \frac{\partial J_t}{\partial W} \\
\frac{\partial J_2}{\partial W} &= \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}
\end{align*}
\]

so let’s take a single timestep t:
let’s try it out for W with the **chain rule**:

\[
\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}
\]

so let’s take a single timestep t:

\[
\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}
\]

but wait...
let’s try it out for W with the chain rule:

\[
\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}
\]

so let’s take a single timestep t:

\[
\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}
\]

but wait...

\[
s_2 = \tanh(U s_1 + W x_2)
\]
let’s try it out for W with the chain rule:

$$\frac{\partial J}{\partial W} = \sum_t \frac{\partial J_t}{\partial W}$$

so let’s take a single timestep t:

$$\frac{\partial J_2}{\partial W} = \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial W}$$

but wait...

$$s_2 = \tanh(U s_1 + W x_2)$$

s_1 also depends on W so we can’t just treat $\frac{\partial s_2}{\partial W}$ as a constant!
how does s_2 depend on W?
how does s_2 depend on W?
how does s_2 depend on W?

\[
\frac{\partial s_2}{\partial W} + \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W}
\]
how does s_2 depend on W?

\[
\frac{\partial s_2}{\partial W} + \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial W} + \frac{\partial s_2}{\partial s_0} \frac{\partial s_0}{\partial W}
\]
backpropagation through time:

\[
\frac{\partial J_2}{\partial W} = \sum_{k=0}^{2} \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial s_k} \frac{\partial s_k}{\partial W}
\]

Contributions of W in previous timesteps to the error at timestep t
backpropagation through time:

\[
\frac{\partial J_t}{\partial W} = \sum_{k=0}^{t} \frac{\partial J_t}{\partial y_t} \frac{\partial y_t}{\partial s_t} \frac{\partial s_t}{\partial s_k} \frac{\partial s_k}{\partial W}
\]

Contributions of \(W \) in previous timesteps to the error at timestep \(t \)
why are RNNs hard to train?
problem: vanishing gradient

\[
\frac{\partial J_2}{\partial W} = \sum_{k=0}^{2} \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial s_k} \frac{\partial s_k}{\partial W}
\]
problem: vanishing gradient

\[
\frac{\partial J_2}{\partial W} = \sum_{k=0}^{2} \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial s_k} \frac{\partial s_k}{\partial W}
\]
Problem: vanishing gradient

\[
\frac{\partial J_2}{\partial W} = \sum_{k=0}^{2} \frac{\partial J_2}{\partial y_2} \frac{\partial y_2}{\partial s_2} \frac{\partial s_2}{\partial s_k} \frac{\partial s_k}{\partial W}
\]

at \(k = 0\):

\[
\frac{\partial s_2}{\partial s_0} = \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial s_0}
\]
problem: vanishing gradient

\[
\frac{\partial J_n}{\partial W} = \sum_{k=0}^{n} \frac{\partial J_n}{\partial y_n} \frac{\partial y_n}{\partial s_n} \frac{\partial s_n}{\partial s_k} \frac{\partial s_k}{\partial W}
\]
problem: vanishing gradient

\[
\frac{\partial J_n}{\partial W} = \sum_{k=0}^{n} \frac{\partial J_n}{\partial y_n} \frac{\partial y_n}{\partial s_n} \frac{\partial s_n}{\partial s_k} \frac{\partial s_k}{\partial W}
\]

as the gap between timesteps gets bigger, this product gets longer and longer!
problem: vanishing gradient

\[
\frac{\partial s_n}{\partial s_{n-1}} \frac{\partial s_{n-1}}{\partial s_{n-2}} \cdots \frac{\partial s_3}{\partial s_2} \frac{\partial s_2}{\partial s_1} \frac{\partial s_1}{\partial s_0}
\]
problem: vanishing gradient

what are each of these terms?
Problem: vanishing gradient

What are each of these terms?

\[
\frac{\partial s_n}{\partial s_{n-1}} = W^T \text{diag}[f'(W_{s_{j-1}} + Ux_j)]
\]

\(W\) = sampled from standard normal distribution = mostly < 1

\(f\) = tanh or sigmoid so \(f' < 1\)
Problem: vanishing gradient

What are each of these terms?

\[
\frac{\partial s_n}{\partial s_{n-1}} = W^T \text{diag}[f'(W_{s_{n-1}} + Ux_j)]
\]

- \(W = \text{sampled from standard normal distribution} = \text{mostly} < 1\)
- \(f = \text{tanh or sigmoid so } f' < 1\)

We're multiplying a lot of **small numbers** together.
we’re multiplying a lot of **small numbers** together.

so what?

group errors due to further back timesteps have increasingly **smaller gradients**.

so what?

parameters become biased to **capture shorter-term dependencies**.
“In France, I had a great time and I learnt some of the _____ language.”

our parameters are not trained to capture long-term dependencies, so the word we predict will mostly depend on the previous few words, not much earlier ones.
solution #1: activation functions

ReLU derivative prevents f' from shrinking the gradients
solution #2: initialization

weights initialized to identity matrix
biases initialized to zeros

\[I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \]

prevents \(W \) from shrinking the gradients
a different type of solution: more complex cells
solution #3: **gated cells**

rather each node being just a simple RNN cell, make each node a more **complex unit with gates** controlling what information is passed through.

Long short term memory cells are able to keep track of information throughout many timesteps.
solution #3: more on LSTMs
solution #3: more on **LSTMs**

c_j _forget irrelevant parts of previous state_ c_{j+1}
solution #3: more on LSTMs

c_j

selectively update cell state values

c_{j+1}
solution #3: more on LSTMs

\[c_j \rightarrow \text{output certain parts of cell state} \rightarrow c_{j+1} \]
solution #3: more on **LSTMs**

- c_j: forget irrelevant parts of previous state
- c_{j+1}: selectively update cell state values
- c_{j+1}: output certain parts of cell state
solution #3: more on LSTMs

MIT 6.S191 | Intro to Deep Learning | IAP 2017
why do LSTMs help?

1. forget gate allows information to pass through unchanged
2. cell state is separate from what’s outputted
3. s_j depends on s_{j-1} through addition!
 \rightarrow derivatives don’t expand into a long product!
possible task: classification (i.e. sentiment)

@HVSVN

Don't fly with @British_Airways. They can't keep track of your luggage.

):(

Kim Kardashian @KimKardashian

Happy Birthday to my best friend, the ❤️ of my life, my soul!!! I love you beyond words!

instagram.com/p/aTgfI-OS-a/

:)
possible task: classification (i.e. sentiment)

$W u s_0 u s_1 u \ldots u s_n$

y is a probability distribution over possible classes (like positive, negative, neutral), aka a softmax
possible task: music generation

Music by: Francesco Marchesani,
Computer Science Engineer, PoliMi
possible task: music generation

\(y_0 \)
E
V
W
\(<\text{start}>\)
\(x_0 \)

\(y_1 \)
D
V
W
E
\(x_1 \)

\(y_2 \)
F#
V
W
D
\(x_2 \)

\(y_i \) is actually a probability distribution over possible next notes, aka a softmax.

MIT 6.S191 | Intro to Deep Learning | IAP 2018
possible task: machine translation
possible task: machine translation
problem: a single encoding is limiting

all the decoder knows about the input sentence is in one fixed length vector, s_2
solution: attend over all encoder states
solution: attend over all encoder states

MIT 6.S191 | Intro to Deep Learning | IAP 2018
solution: attend over all encoder states
now we can model sequences!

- why recurrent neural networks?
- training them with backpropagation through time
- solving the vanishing gradient problem with activation functions, initialization, and gated cells (like LSTMs)
- building models for classification, music generation and machine translation
- using attention mechanisms
and there’s lots more to do!

- extending our models to timeseries + waveforms
- complex language models to generate long text or books
- language models to generate code
- controlling cars + robots
- predicting stock market trends
- summarizing books + articles
- handwriting generation
- multilingual translation models
- ... many more!