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Generative modeling

* (Generative models take training samples from some data
distribution and learn a model that represents that distribution.

e Density estimation:
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images taken from Goodfellow (2017) 2



Why generative models?

 Many tasks require structured output

- EQ. Machine translation

English Spanish French Detectlanguage -~ ".. Spanish English Romanian -~
I'm definitely not using Google Translate todo * | Definitivamente no estoy usando Google
my Spanish hc¥nework.| Translate para hacer mi tarea Espanol
S ¢ @y~ i 0 < 4

image credit: Adam Geitgey blog (2016) Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences



Why Generative Models2 Outlier detection

cars | wheelchairs

e | arge-scale deployment of CNN-
based perception systems Is
becoming a reality.

* How do we detect when we
encounter something new or rare
(I.e. not appearing In the training
data)?

 Goal: detect these outliers
(anomalies) to avoid dangerous
misclassification.

e Strategy: Leverage generative
models of the training distribution ¥
to detect outliers.
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Why Generative Models? Generation for Simulation

o Supports Reinforcement Learning for Robotics: Make simulations sufficiently
realistic that learned policies can readily transter to real-world application

Photo from IEEE Spectrum



Deep Generative Models: Outline

Autoregressive models

 Deep NADE, PixelRNN, Pixel CNN, WaveNet, Video Pixel
Network, etc.

L atent variable modadels

e Variational Auto encoders

e (Generative Adversarial Networks

our focus today



| atent Variable Models

 The Variational Autoencoder model:

- Kingma and Welling, Auto-Encoding Variational Bayes, International Conference on Learning
Representations (ICLR) 2014.

- Rezende, Mohamed and Wierstra, Stochastic back-propagation and variational inference in deep
[atent Gaussian models. ICML 2014.
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Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007 /



| atent Variable Models

Frey Faces:
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| atent Variable Models

e |atent variable model: learn a mapping from some latent variable z to a complicated
distribution on X.

p(z) = / p(z,2) d=  where p(z,z) = p(@ | 2)p(2)

p(z) = something simple plx | z)=g9(2)

e (Can we learn to decouple the true explanatory factors underlying the data distribution??
—.Q. separate identity and expression in face images
z2 X2

Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007 S



| atent Variable Models

e |atent variable model: learn a mapping from some latent variable z to a complicated

distribution on x.

p(z) = / p(z,2) d=  where p(z,z) = p(@ | 2)p(2)

p(z) = something simple

e (Can we learn to decouple the
—.Q. separate identity and exp
£2

true exp
'ession |
X2

anatory

p(x| z) =g(2)
‘actors underlying the data distribution”
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Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007 10



Variational Auto-Encoder (VAE)

 Where does zcome from”? — The classic DAG problem.

* The VAE approach: introduce an inference machine q,(z | ) that
learns to approximate the posterior py(z | z).

* Define a variational lower bound on the data likelihood: p,(z) > £(0, ¢, z)

L(O,p,x) =

« Whatis qs (2 | )"

U (2]2) log po(x, 2) —logqy(2 | @)

~

o (zlz)Hogpela | z) + logpg(2) =

Dx1 (q4(2 | )| pe(2))

regularization term reconstruction term

11



VAE Inference model

e The VAE approach: introduce an inference model q4(2 | ) that learns to
approximates the intractable posterior pe(z | ) by optimizing the variational
lower bounad:

L(0,0,2) = =Dk (q4(2 | 2)[| po(2)) + Eq, (212) ogpo(z | 2)
» We parameterize q4(z | ) with another neural network:

46(z | 2) = q(z; [(2,9)) po(z | 2) = p(a;9(2,0))
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Reparametrization trick

« Adding a few detalls + one really important trick

* Let's consider zto bereal and ¢u(z | ) = N(z; p. (), 0. (x))

* Parametrize Z as . _ |, (z) 4+ o, (z)e, WO €, = N(0,1)
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Training with backpropagation!

 Due to a reparametrization trick, we can simultaneously train both the generative
model po(z | 2) and the inference model g4 (2 | ) by optimizing the variational
bound using gradient backpropagation.

N—

Objective function: £(0,¢,r) = —DxL (94(z | )| pe(2)) + Eq, (2|2 [logpe(z | 2)]

Forward propagation
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Impressive ...

VCIni”CI VAE SCImpleS ... at the time

| abelled Faces in the Wild (LFW) ImageNet (small) 15



P' I A E Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed Adrien Ali Taigaq,
Ixe Francesco Visin, David Yazquez, Aaron Courville. ICLR 2017

* Uses a PixelCNN in the VAE decoder to help avoid the blurring
caused by the standard VAE assumption of independent pixels.

€+PixelCNN




PierVAE Samples (Gulrajani et al. 2017)

LSUN bedroom scenes (64x64) ImageNet (64x64)




Inverse Autoregressive Flow (Kingma et al., NIPS 2016)

e Standard VA
the prior.

o |A

(a) Prior distribution

much better fit between t

- greatly improves the f

h

(b)

exipilr

Posteriors in standard VAE (c) Posteriors in VAE with IAF

= posteriors are tactorized - limiting how well they can (marginally) fit

'y of the posterior distributions, and allows for a

e poS

eriors and the prior.



Another way to train a latent variable model?

inference
~—Latent variables —
£2
Z Z
N\ _/ N\ _/
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G %
v E
4 ) 4 )
X X

- ~ Observed variables - ~
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GGenerative Adversarial Networks

L=
=,
i

D tries to
output O

D tries to
output 1

Differentiable
function D

Differentiable
function D

X sampled
from data

X sampled
from model

by

Differentiable
function G

Input noise

20



GGenerative Adversarial Networks
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GAN Obijective

e Formally, express the game between discriminator D and
generator G with the minimax objective:

minmax E log(D(x))] + :E:JPQ log(1 — D(x))].

where:
?,. IS the data distribution
?, Is the model distribution implicitly detined by:

r==G(z), z~p(=z)

- the generator input z is sampled from some simple
noise distribution, (e.g. uniform or Gaussian).

22



GAN Theory

e Optimal (nonparametric) discriminator:

pr(x)
pr() + py(x)

 Under an ideal discriminator, the generator minimizes the
Jensen-Shannon divergence between P, and P,

DT_I_)) D’I"—I_))
JS(DT\PQ):KL(DT ; 9) +KL(DQ ; 9)

where KL(P,[B,) = [log (2} ) pr(@)duta)

D™ (x) =




GAN Theory ... In practice

* [he minimax objective leads to vanishing gradients as the
discriminator saturates.

* |n practice, Goodfellow et al (2014) advocate the heuristic
training objective:

max E (log(D())] + _E, [log(1 — D(@))]

< |log(D(x))].
max [ [log(D(&))
» However, this modified loss function can still misbehave In
the presence of a good discriminator.

24



GAN samples
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. Qing LiT, o
Least-Squares GAN wuumiiiis

-

128><J1'28 LSUN bedroom scenes
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LSUN bedroom scenes



What makes GANs special?

Cartoon of the Image manifold:
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more traditional max-likelihood approach



But what about inference...

 (Can we incorporate an inference mechanism into GANS"?

| atent variables

a ) a )
Z2

Z Z

\_ Y, \_ Y,
A
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- ~ Observed variables - ~
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ALI / BIGAN: model diagram

Prior distribution

4 R 4

z ~q(z | x) z ~ p(z)
ok 2\
| S — D(x, z) — O |3
OIS o | N

LIJ B
X ~ q(x) X ~ P(X |2z

¥ 5 5

Data distribution

e ALIL: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro, Ben Poole, Alex Lamb, Martin Arjovsky (2016)
ADVERSARIALLY LEARNED INFERENCE, arXiv:1606.00704, ICLR 2017

* BiGAN: Donahue, Krahenbuhl and Darrell (2016), ADVERSARIAL FEATURE LEARNING, arXiv:1605.09782, ICLR 2017 4,



Hierarchical ALl

CelebA-128Xx128

Model samples BS




Reconstructions given zo
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cycleGAN: Adversarial training of domain transformations

(Zhu et al. ICCV 2017)

 (CycleGAN learns transformations across domains with unpaired data.

« Combines GAN loss with “cycle-consistency loss™: L1 reconstruction.

a ¥ T ¢
/-\ - R . /\ -
Dx DY? II Yl\/.’lr| Iy\_/|X y|
H G o F F
X Y ¥ X cycle-consistency
. \-/ cycle-consistency \S‘. loss
F loss )

Image credits: Jun-Yan Zhu*, Taesung Park™, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017.



CycleGAN for unpaired data

Monet {__ Photos Zebras T Horses Summer Z_ Winter
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Photograph

Image credits: Jun-Yan Zhu*, Taesung Park®, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017.



PROGRESSIVE GROWING OF GANS FOR IMPROVED

QUALITY, STAB”.ITY, AND VARIATION (Kerras et al. from NVIDIA, 2017)

Recent work from
NVIDIA.

Improves image quality
by growing the model

size throughout training.

Samples from a model
trained on the CelebA
face dataset.

1024x1024 model samples



PROGRESSIVE GROWING OF GANS FOR IMPROVED

QUALITY, STABI LITY, AN D VARIATION (Kerras et al. from NVIDIA, 2017)

G Latent Latent Latent
v v v
ax4 4x4 Ax4
‘ 8x8
E § 1024x1024
B. B. - *
. i Reals . iReals N *Reals
D | . 1024x1024
v
N 3X8
vV
4x4 4x4 Ax4

Training progresses >




PROGRESSIVE GROWING OF GANS FOR IMPROVED

QUALITY, STABI LITY, AN D VARIATION (Kerras et al. from NVIDIA, 2017)

e Recent work from
NVIDIA.

R VOIDE

 |mproves image quality
by growing the model
size throughout training.

 (Conditional samples
from a model trained on
the LSUN dataset
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