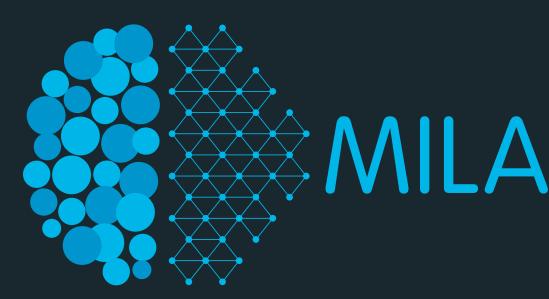
Deep Generative Models Aaron Courville MILA, Université de Montréal

6.S191: Introduction to Deep Learning

MIT, Jan 30th, 2018

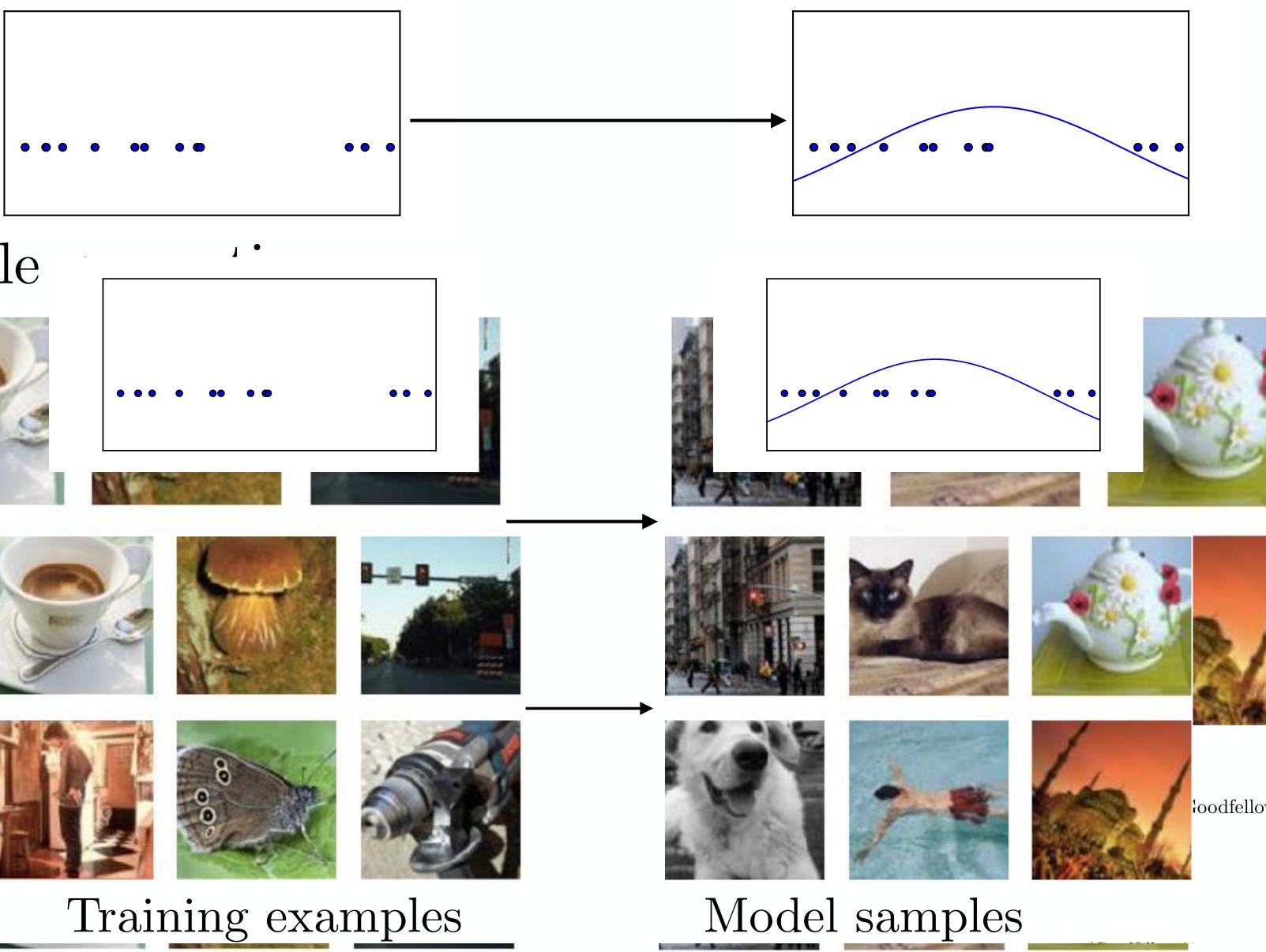
Institut des algorithmes d'apprentissage de Montréal



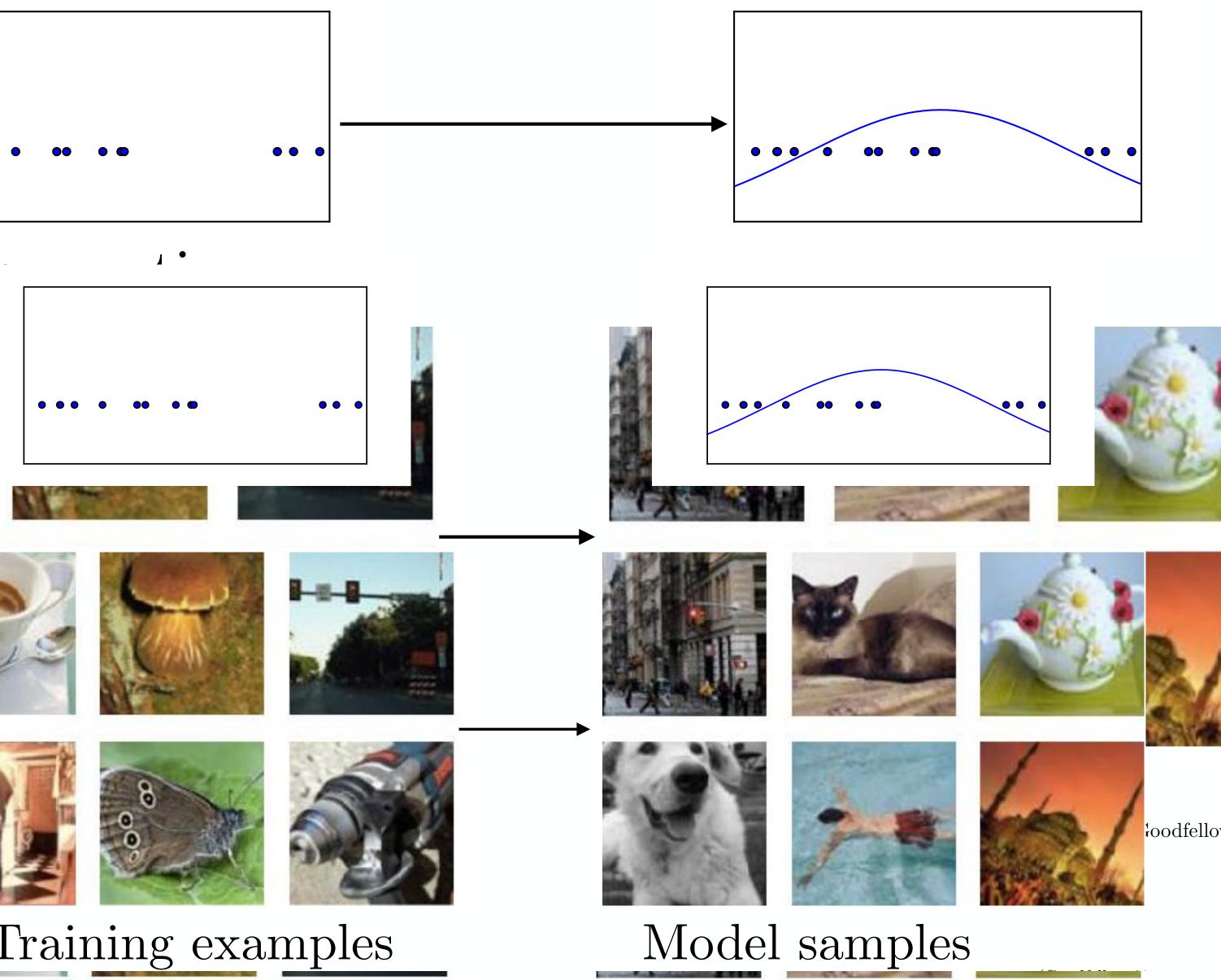
- Genera distribu
- Density

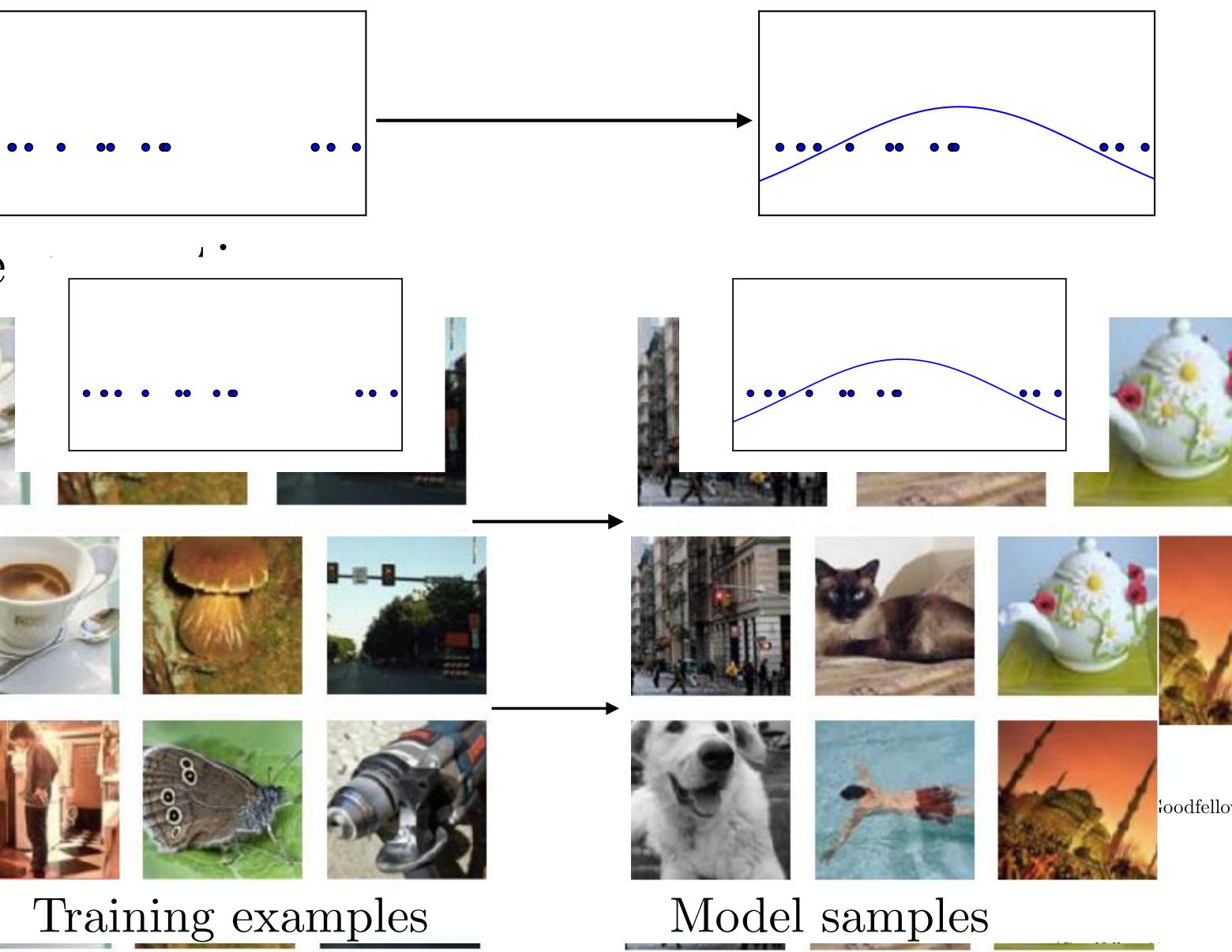
• Sample

• Density estimation



• Sample





images taken from Goodfellow (2017)

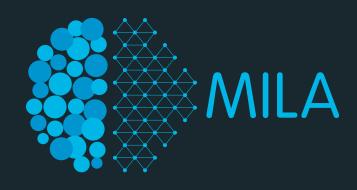
Why generative models?

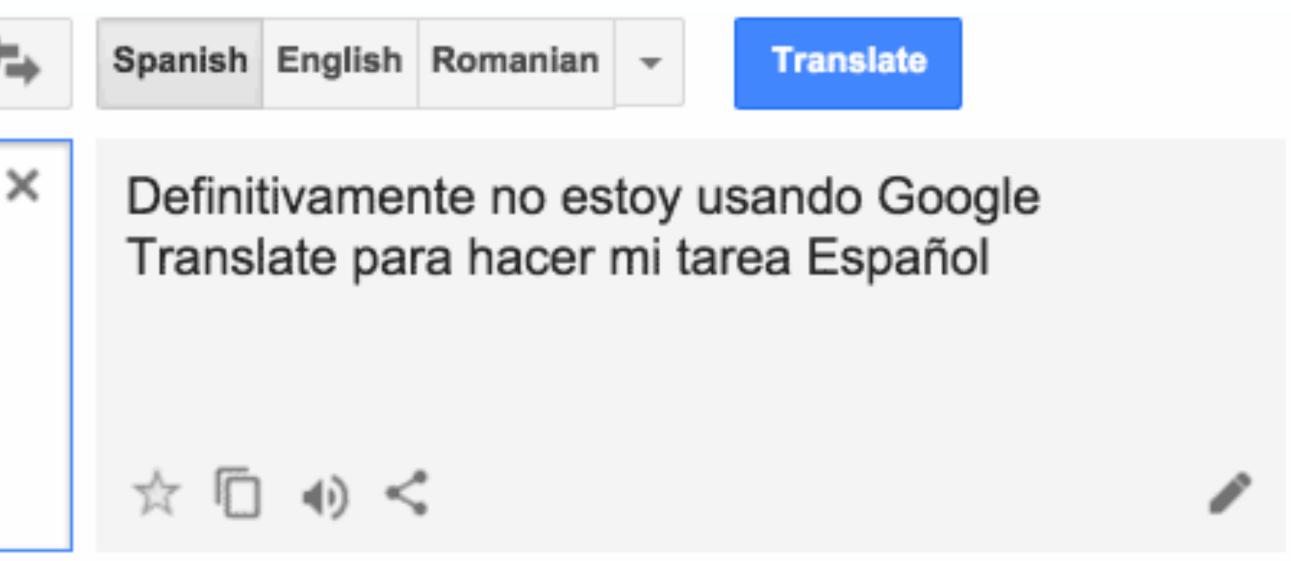
- Many tasks require structured output
 - Eg. Machine translation

English	Spanish	French	Detect language	-		+
---------	---------	--------	-----------------	---	--	---

I'm definitely not using Google Translate to do my Spanish homework.

image credit: Adam Geitgey blog (2016) Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences



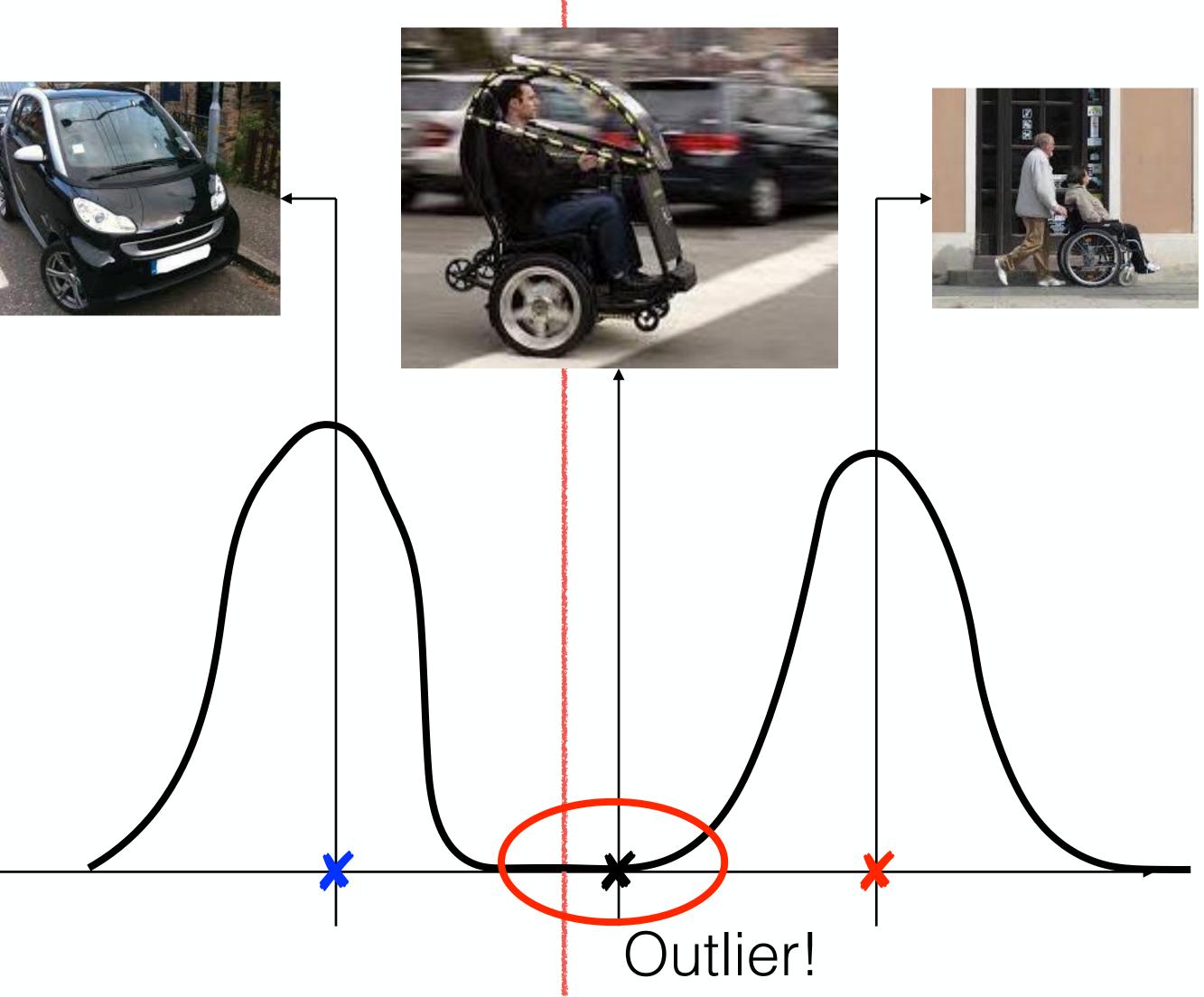


Why Generative Models? Outlier detection

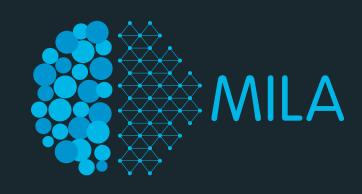
- Large-scale deployment of CNNbased perception systems is becoming a reality.
- How do we detect when we encounter something new or rare (i.e. not appearing in the training data)?
- Goal: detect these outliers (anomalies) to avoid dangerous misclassification.
- Strategy: Leverage generative models of the training distribution to detect outliers.



cars wheelchairs



Why Generative Models? Generation for Simulation



Supports Reinforcement Learning for Robotics: Make simulations sufficiently realistic that learned policies can readily transfer to real-world application

Generative model

Photo from IEEE Spectrum

Deep Generative Models: Outline

Autoregressive models

• Deep NADE, PixelRNN, PixelCNN, WaveNet, Video Pixel Network, etc.

Latent variable models

- Variational Auto encoders
- Generative Adversarial Networks



our focus today

- The Variational Autoencoder model:
 - Representations (ICLR) 2014.
 - latent Gaussian models. ICML 2014.

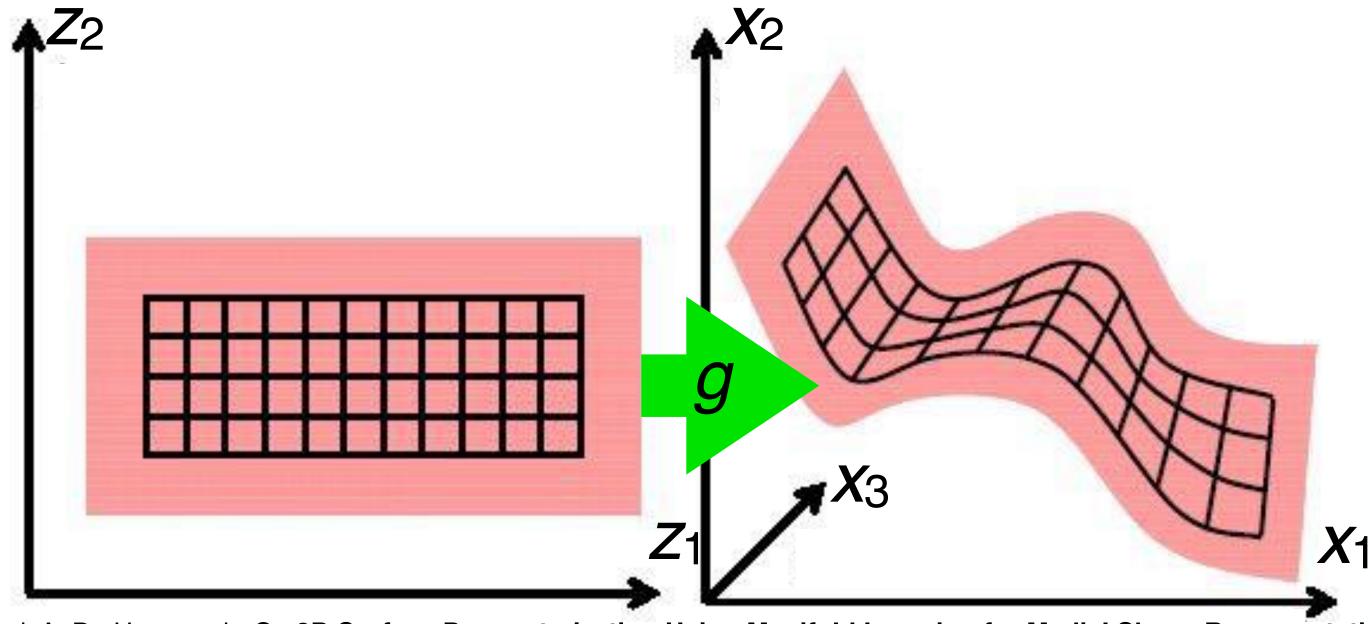
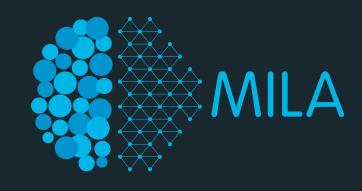


Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007 (



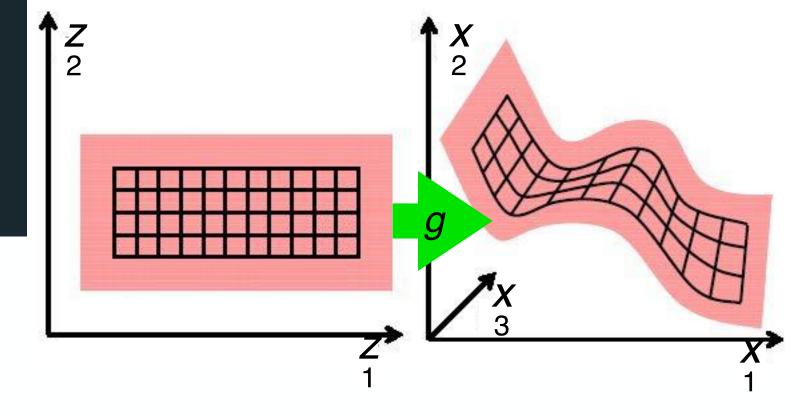
Kingma and Welling, Auto-Encoding Variational Bayes, International Conference on Learning

Rezende, Mohamed and Wierstra, Stochastic back-propagation and variational inference in deep

Frey Faces: Z_{2} Expression

Pose

 Z_1



MNIST:

Ζ

latent variable model: learn a mapping from some latent variable z to a complicated distribution on x.

$$p(x) = \int p(x, z) \, dz$$

Can we learn to decouple the true explanatory factors underlying the data distribution? E.g. separate identity and expression in face images

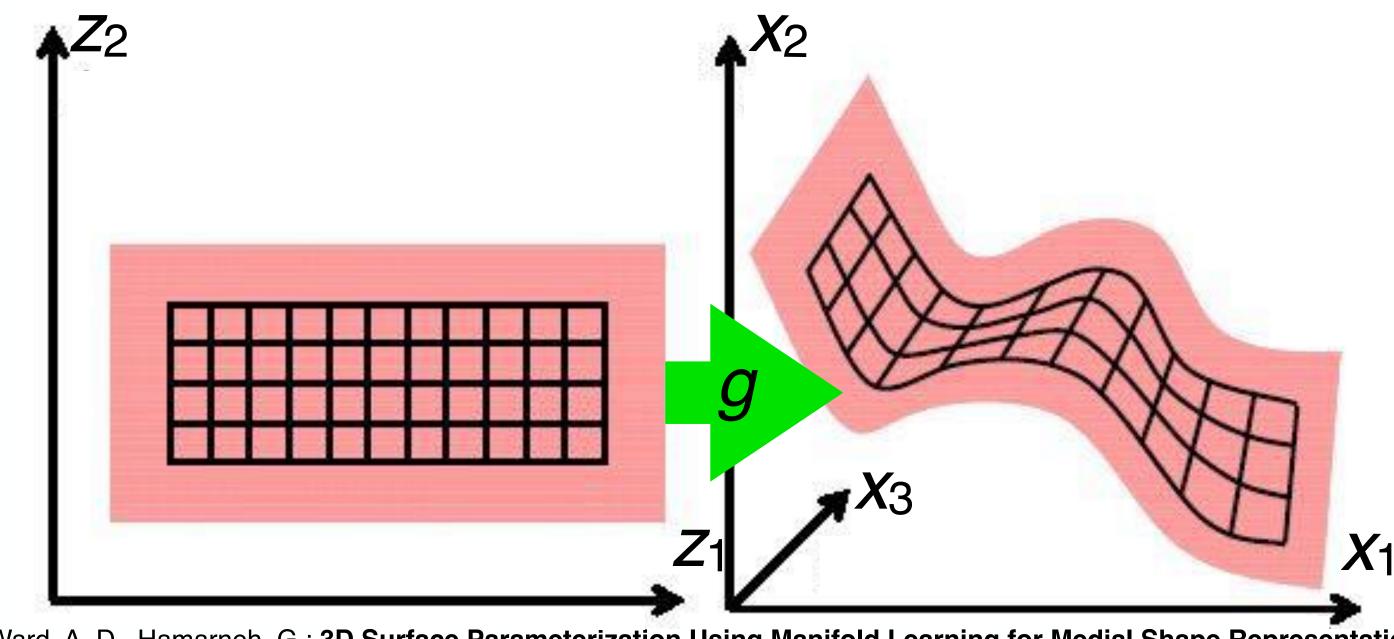
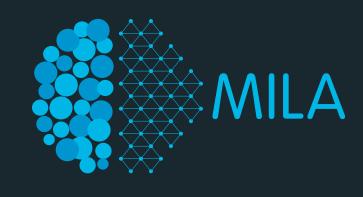


Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007 9



where
$$p(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{x} \mid \boldsymbol{z})p(\boldsymbol{z})$$

p(z) = something simple $p(x \mid z) = g(z)$

latent variable model: learn a mapping from some latent variable z to a complicated distribution on x.

$$p(x) = \int p(x, z) \, dz$$

• Can we learn to decouple the true explanatory factors underlying the data distribution? E.g. separate identity and expression in face images

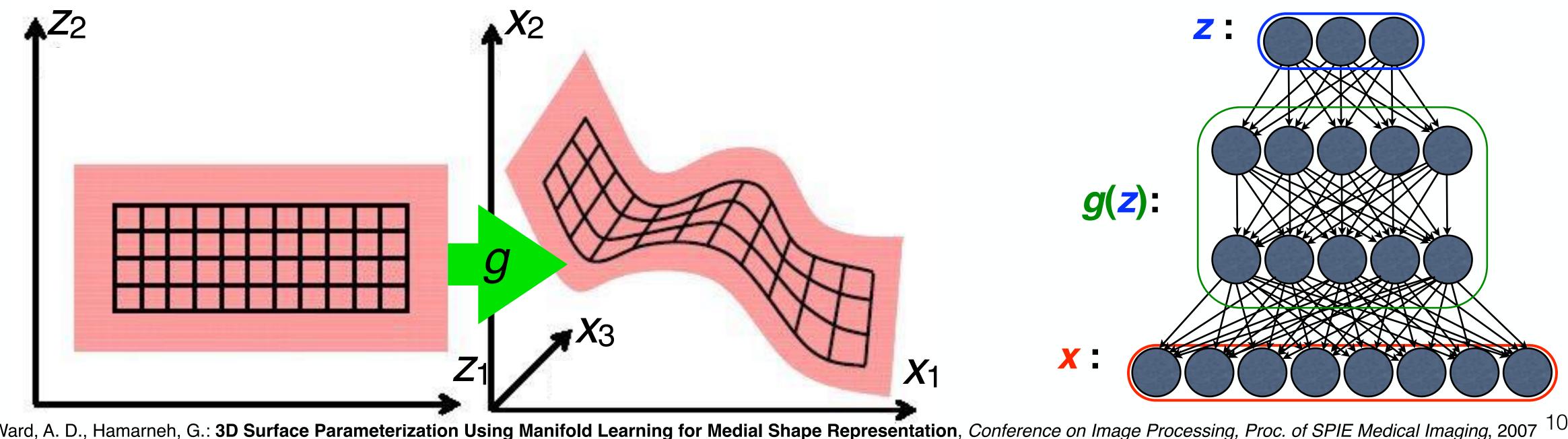
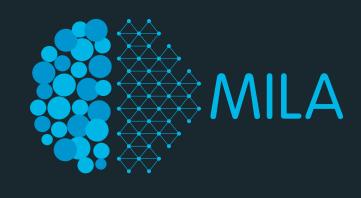


Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007 10



where
$$p(\boldsymbol{x}, \boldsymbol{z}) = p(\boldsymbol{x} \mid \boldsymbol{z})p(\boldsymbol{z})$$

 $p(\boldsymbol{z}) = \text{something simple}$ $p(\boldsymbol{x} \mid \boldsymbol{z}) = g(\boldsymbol{z})$

Variational Auto-Encoder (VAE)

- Where does *z* come from? The classic DAG problem.
- The VAE approach: introduce an inference machine $q_{\phi}(z \mid x)$ that learns to approximate the posterior $p_{\theta}(z \mid x)$.
- Define a variational lower bound on the data likelihood: $p_{\theta}(x) \ge \mathcal{L}(\theta, \phi, x)$

$$\begin{aligned} \mathcal{L}(\theta,\phi,x) &= \mathbb{E}_{q_{\phi}(z|x)} \left[\log e^{-z|x|} \right] \\ &= \mathbb{E}_{q_{\phi}(z|x)} \left[\log e^{-z|x|} \right] \\ &= -D_{\mathrm{KL}} \left(q_{\phi}(z|x) \right)^{2} \end{aligned}$$
What is $q_{\phi}(z|x)$?

 $g p_{\theta}(x, z) - \log q_{\phi}(z \mid x)]$ $g p_{\theta}(x \mid z) + \log p_{\theta}(z) - \log q_{\phi}(z \mid x)]$ $(z \mid x) \parallel p_{\theta}(z)) + \mathbb{E}_{q_{\phi}(z \mid x)} [\log p_{\theta}(x \mid z)]$

zation term

reconstruction term

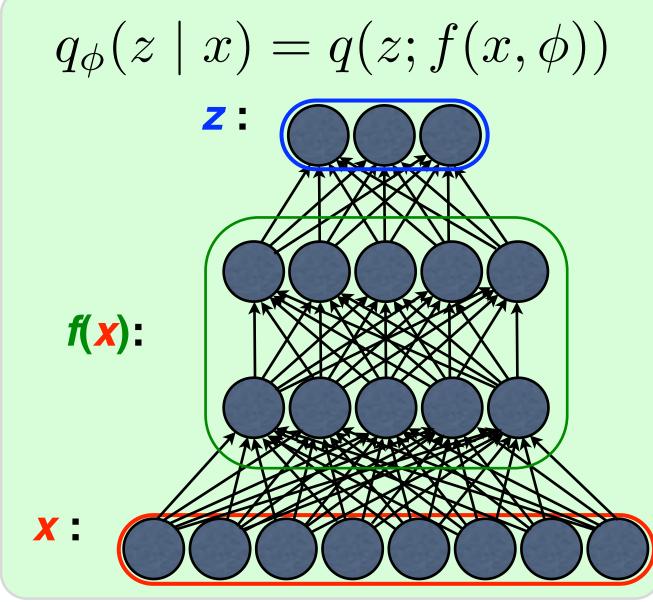
11

VAE Inference model

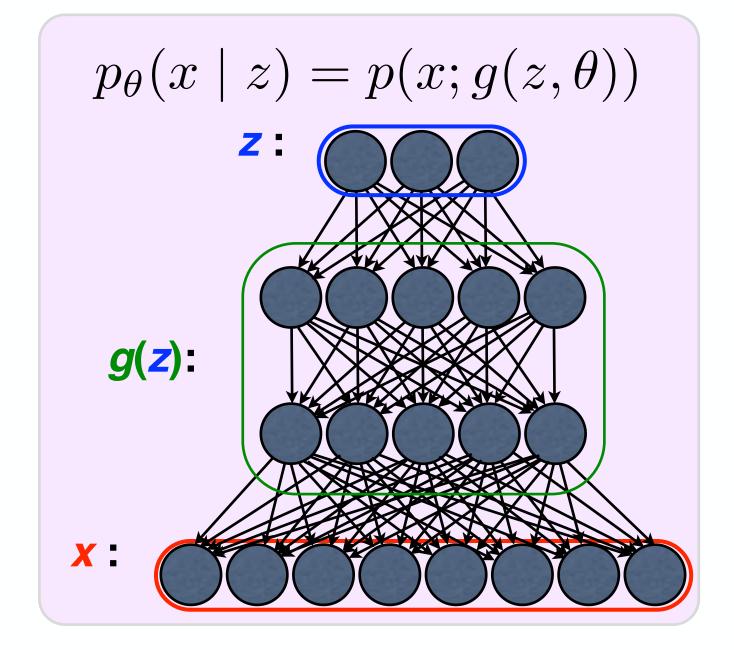
lower bound:

$$\mathcal{L}(\theta, \phi, x) = -D_{\mathrm{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) + \mathbb{E}_{q_{\phi}(z \mid x)} \left[\log p_{\theta}(x \mid z) \right]$$

We parameterize $q_{\phi}(z \mid x)$ with another neural network:



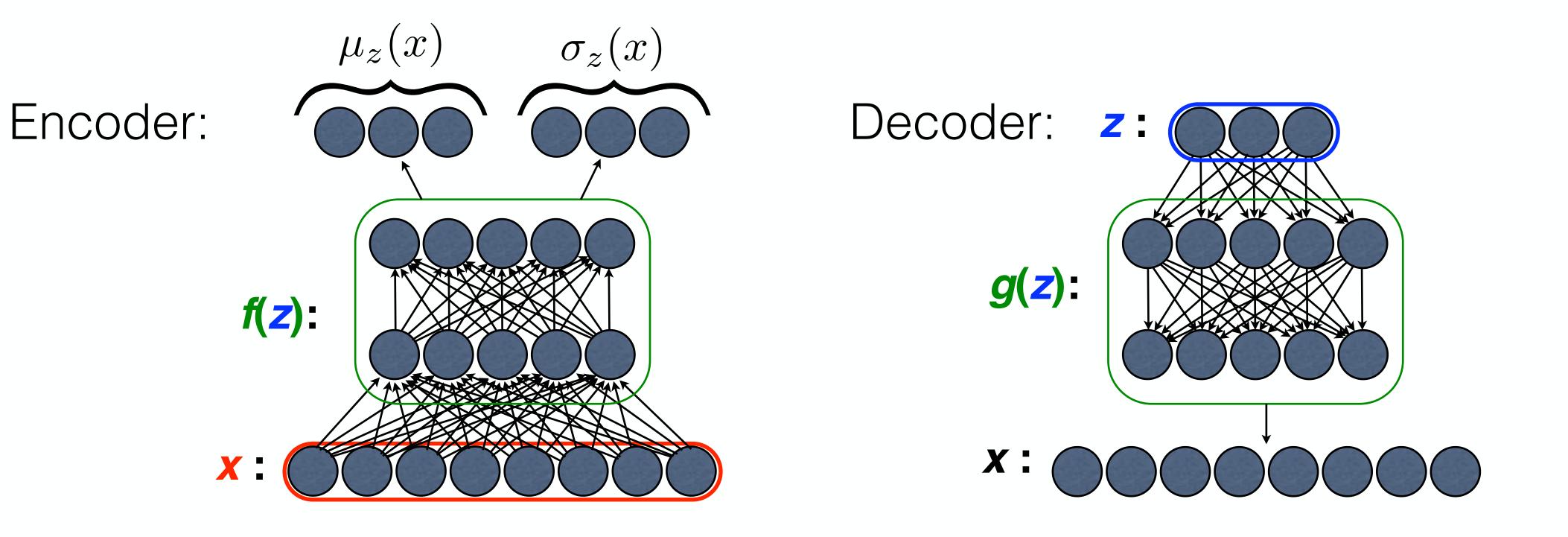
The VAE approach: introduce an inference model $q_{\phi}(z \mid x)$ that learns to approximates the intractable posterior $p_{\theta}(z \mid x)$ by optimizing the variational



12

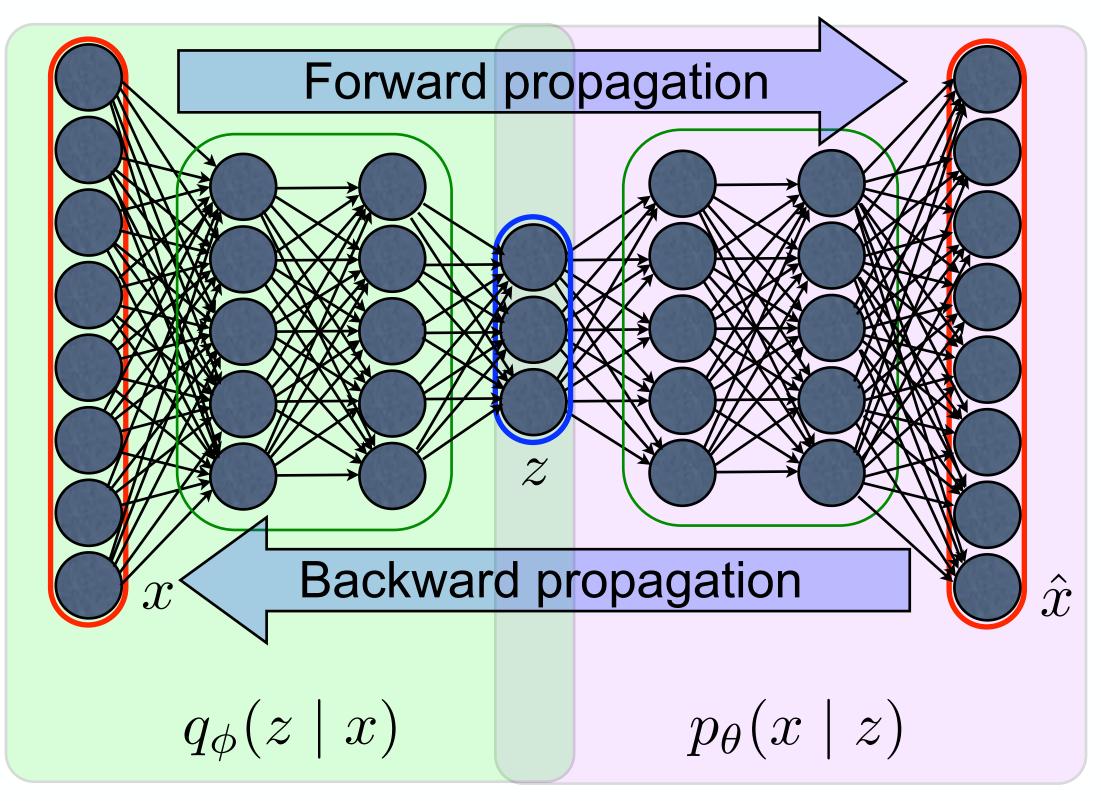
Reparametrization trick

- Adding a few details + one really important trick
- Let's consider z to be real and $q_{\phi}(z \mid x) = \mathcal{N}(z; \mu_z(x), \sigma_z(x))$
- Parametrize z as $z = \mu_z(x) + \sigma_z(x)\epsilon_z$ where $\epsilon_z = \mathcal{N}(0, 1)$



Training with backpropagation!

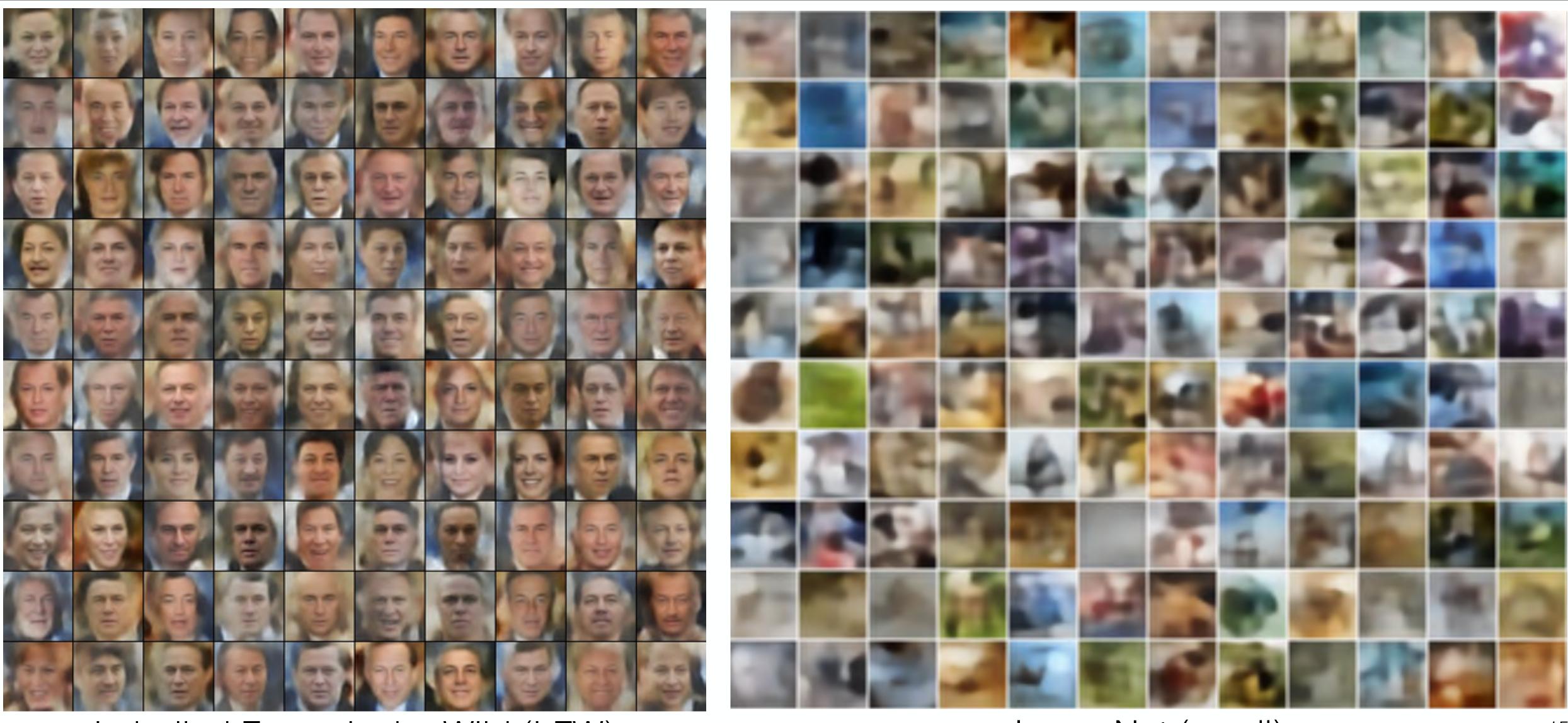
bound using gradient backpropagation.



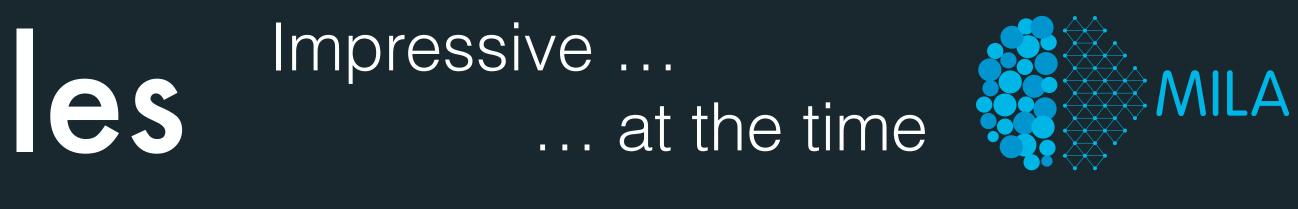
• Due to a reparametrization trick, we can simultaneously train both the generative model $p_{\theta}(x \mid z)$ and the inference model $q_{\phi}(z \mid x)$ by optimizing the variational

Objective function: $\mathcal{L}(\theta, \phi, x) = -D_{\mathrm{KL}} \left(q_{\phi}(z \mid x) \| p_{\theta}(z) \right) + \mathbb{E}_{q_{\phi}(z \mid x)} \left[\log p_{\theta}(x \mid z) \right]$

vanilla VAE samples



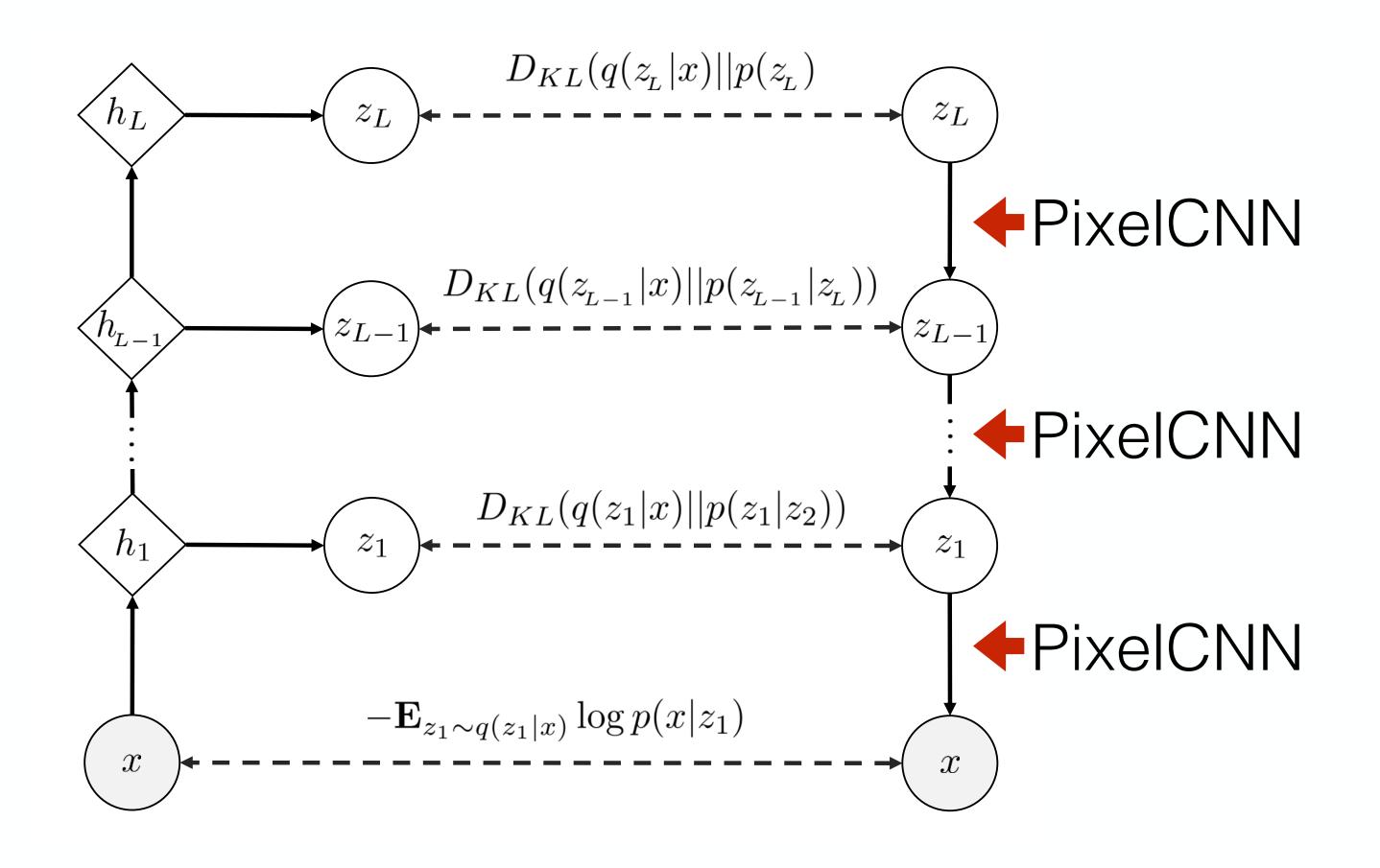
Labelled Faces in the Wild (LFW)



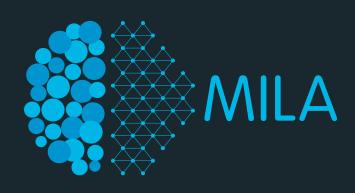
ImageNet (small)

PixelVAE

 \bullet

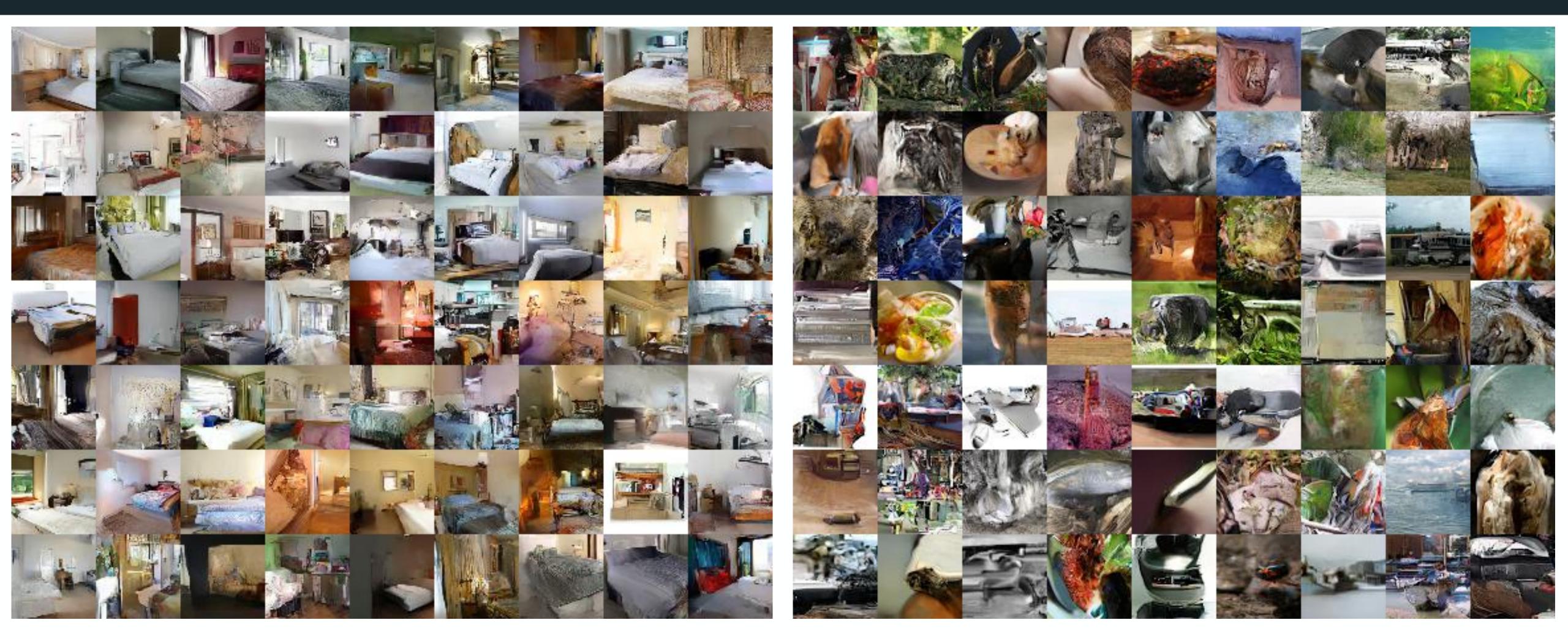


Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed Adrien Ali Taiga, Francesco Visin, David Vazquez, Aaron Courville. ICLR 2017



Uses a PixelCNN in the VAE decoder to help avoid the blurring caused by the standard VAE assumption of independent pixels.

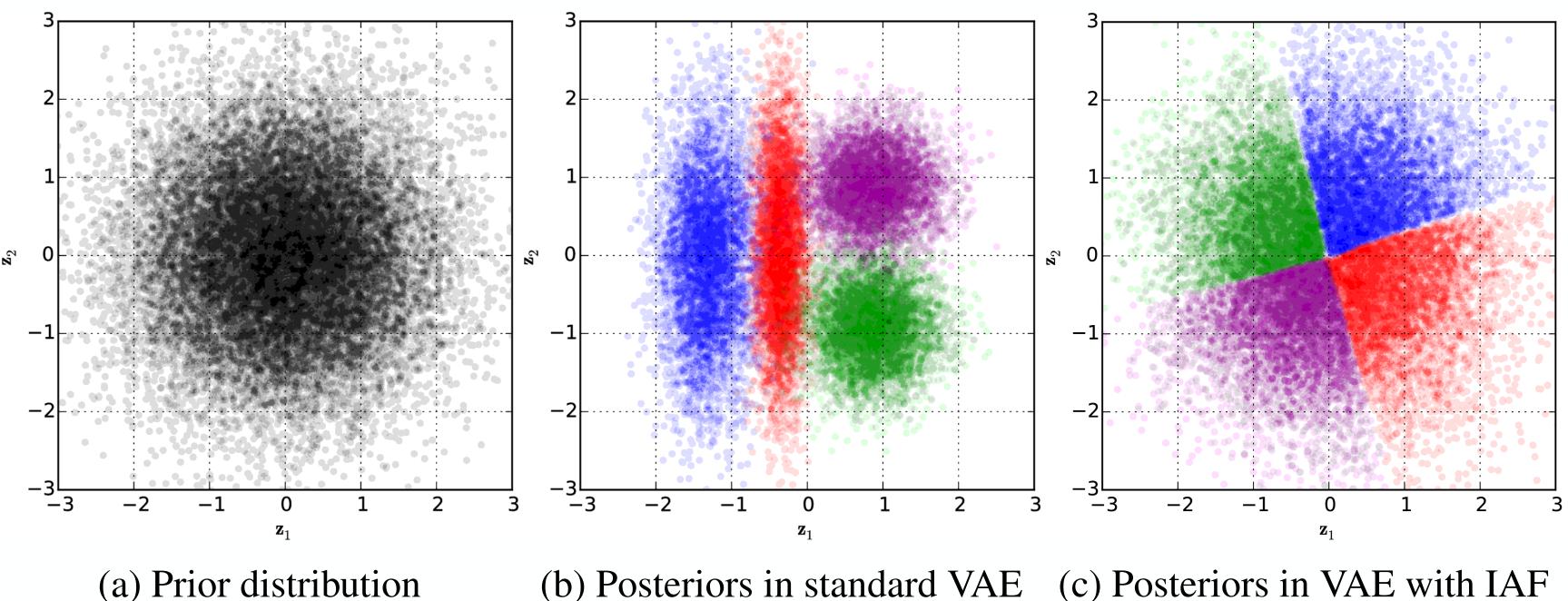
PixelVAE Samples (Gulrajani et al. 2017)



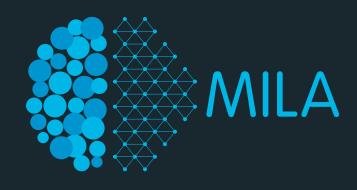
LSUN bedroom scenes (64x64)

ImageNet (64x64)

Inverse Autoregressive Flow (Kingma et al., NIPS 2016)



- the prior.
- much better fit between the posteriors and the prior.

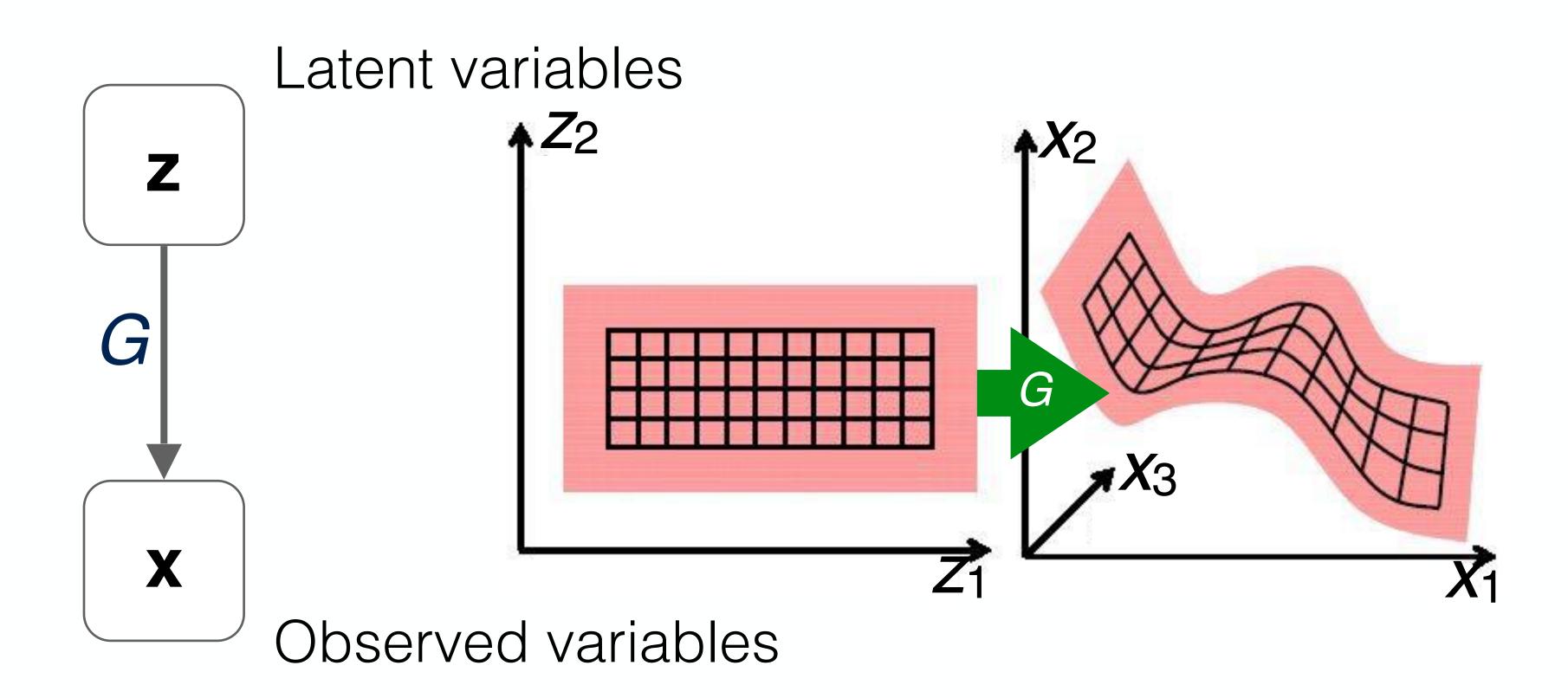


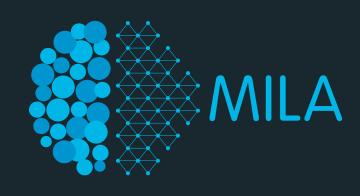
(b) Posteriors in standard VAE (c) Posteriors in VAE with IAF

Standard VAE posteriors are factorized - limiting how well they can (marginally) fit

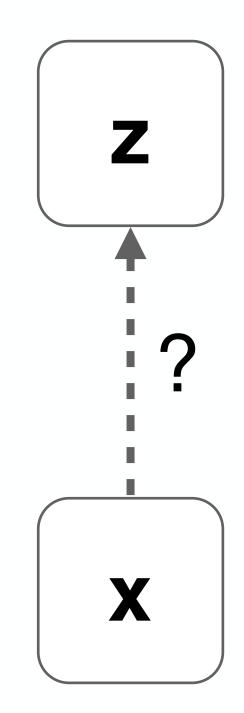
IAF greatly improves the flexibility of the posterior distributions, and allows for a

Another way to train a latent variable model?

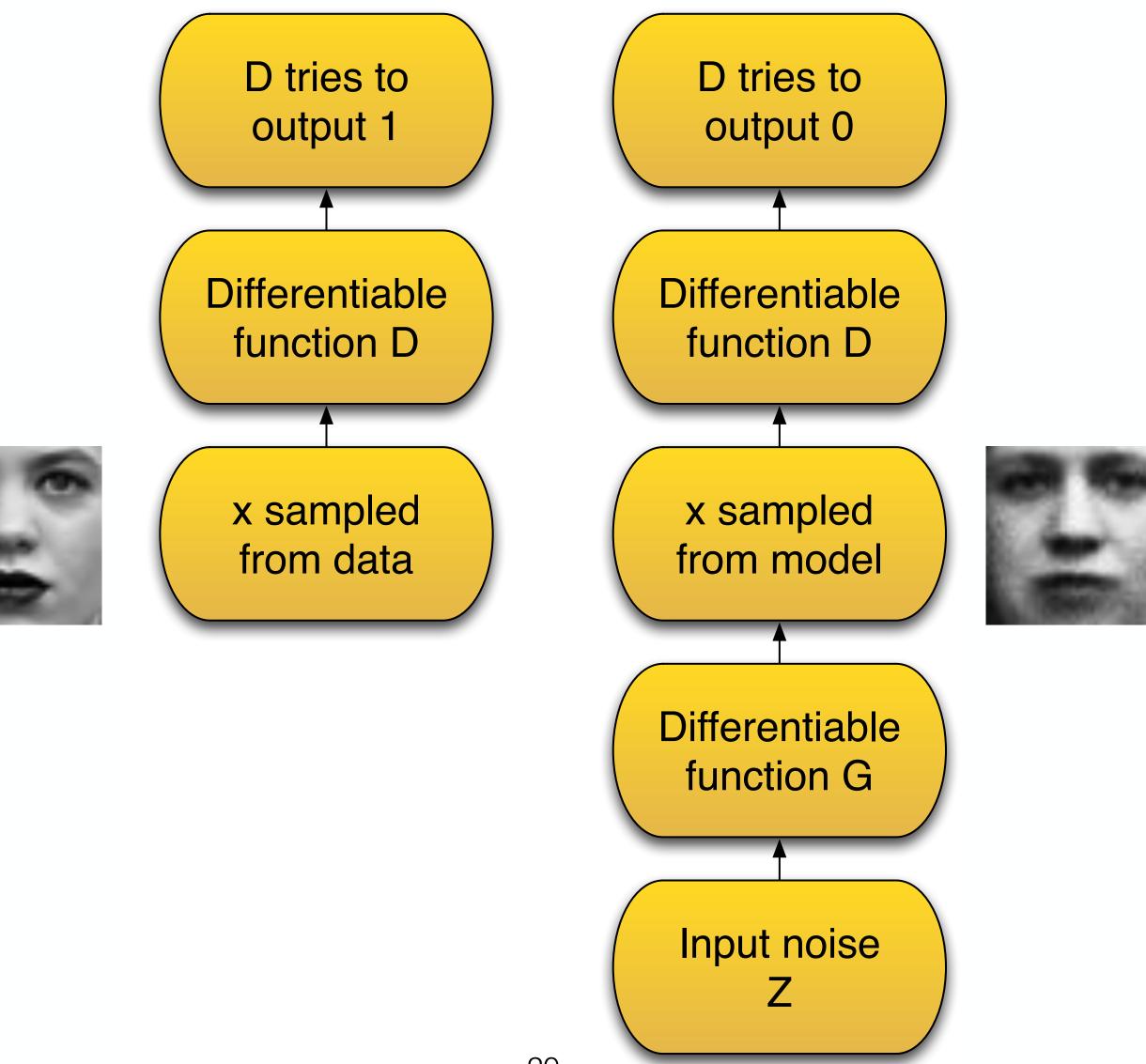




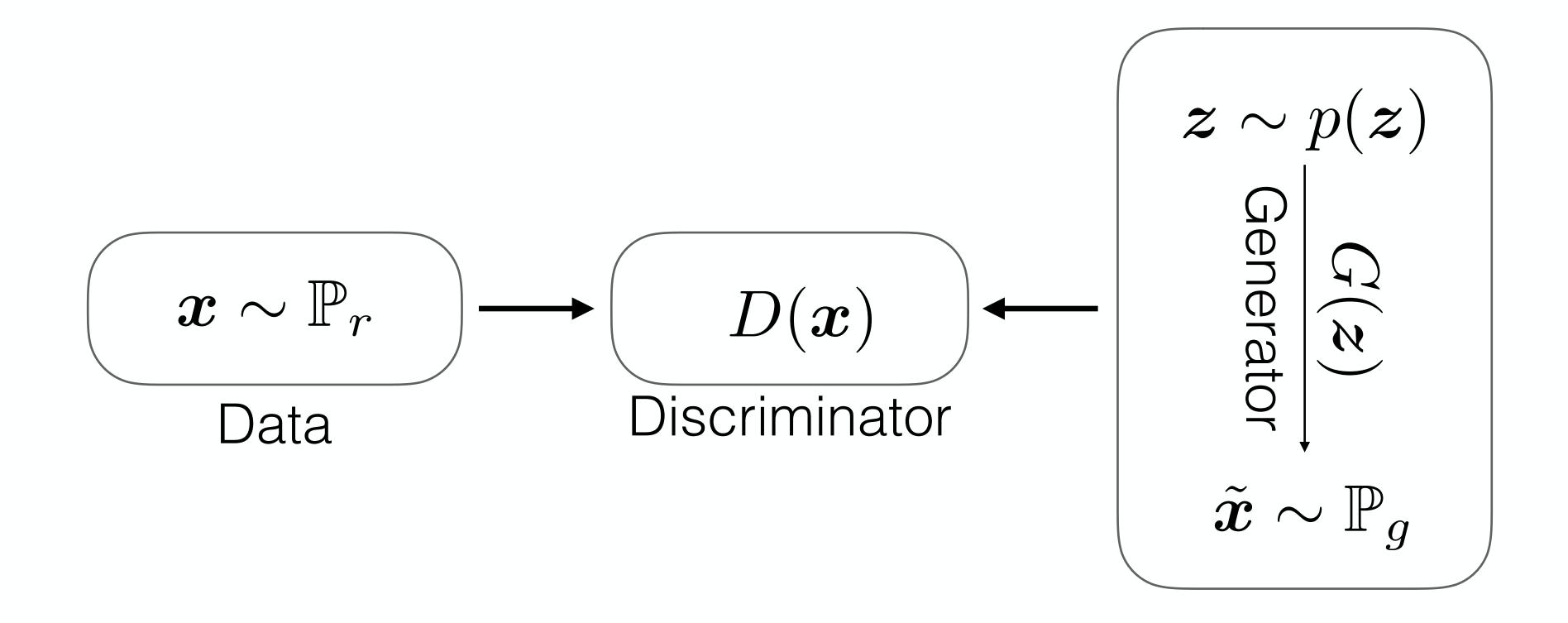
inference



Generative Adversarial Networks



Generative Adversarial Networks



21

GAN Objective

generator G with the minimax objective:

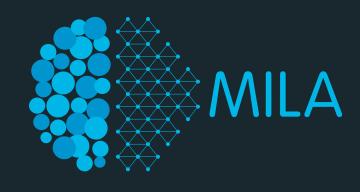
$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim \mathbb{P}_{r}} [\log(D(\boldsymbol{x}))] + \mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_{g}} [\log(1 - D(\tilde{\boldsymbol{x}}))].$$

where:

- \mathbb{P}_r is the data distribution

 $\tilde{\boldsymbol{x}} = G(\boldsymbol{z})$

- the generator input z is sampled from some simple noise distribution, (e.g. uniform or Gaussian).



• Formally, express the game between discriminator D and

- \mathbb{P}_q is the model distribution implicitly defined by:

$$z), \quad z \sim p(z)$$

GAN Theory

• Optimal (nonparametric) discriminator:

 $D^*(\boldsymbol{x}) =$

Jensen-Shannon divergence between \mathbb{P}_r and \mathbb{P}_q .

$$JS(\mathbb{P}_r || \mathbb{P}_g) = KL\left(\mathbb{P}_r \left\|\frac{\mathbb{P}_r + \mathbb{P}_g}{2}\right) + KL\left(\mathbb{P}_g \left\|\frac{\mathbb{P}_r + \mathbb{P}_g}{2}\right)\right)$$

where $KL(\mathbb{P}_r || \mathbb{P}_g) = \int \log\left(\frac{p_r(x)}{p_g(x)}\right) p_r(x) d\mu(x)$

$$\frac{p_r(\boldsymbol{x})}{p_r(\boldsymbol{x}) + p_g(\boldsymbol{x})}$$

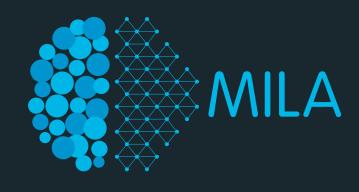
Under an ideal discriminator, the generator minimizes the

GAN Theory ... in practice

- discriminator saturates.
- training objective:
 - $\max_{D} \mathbb{E} \left[\log(D(\boldsymbol{x})) \right]$

 $\max_{G} \mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_{a}} [\log(D(\tilde{\boldsymbol{x}}))].$

the presence of a good discriminator.



• The minimax objective leads to vanishing gradients as the

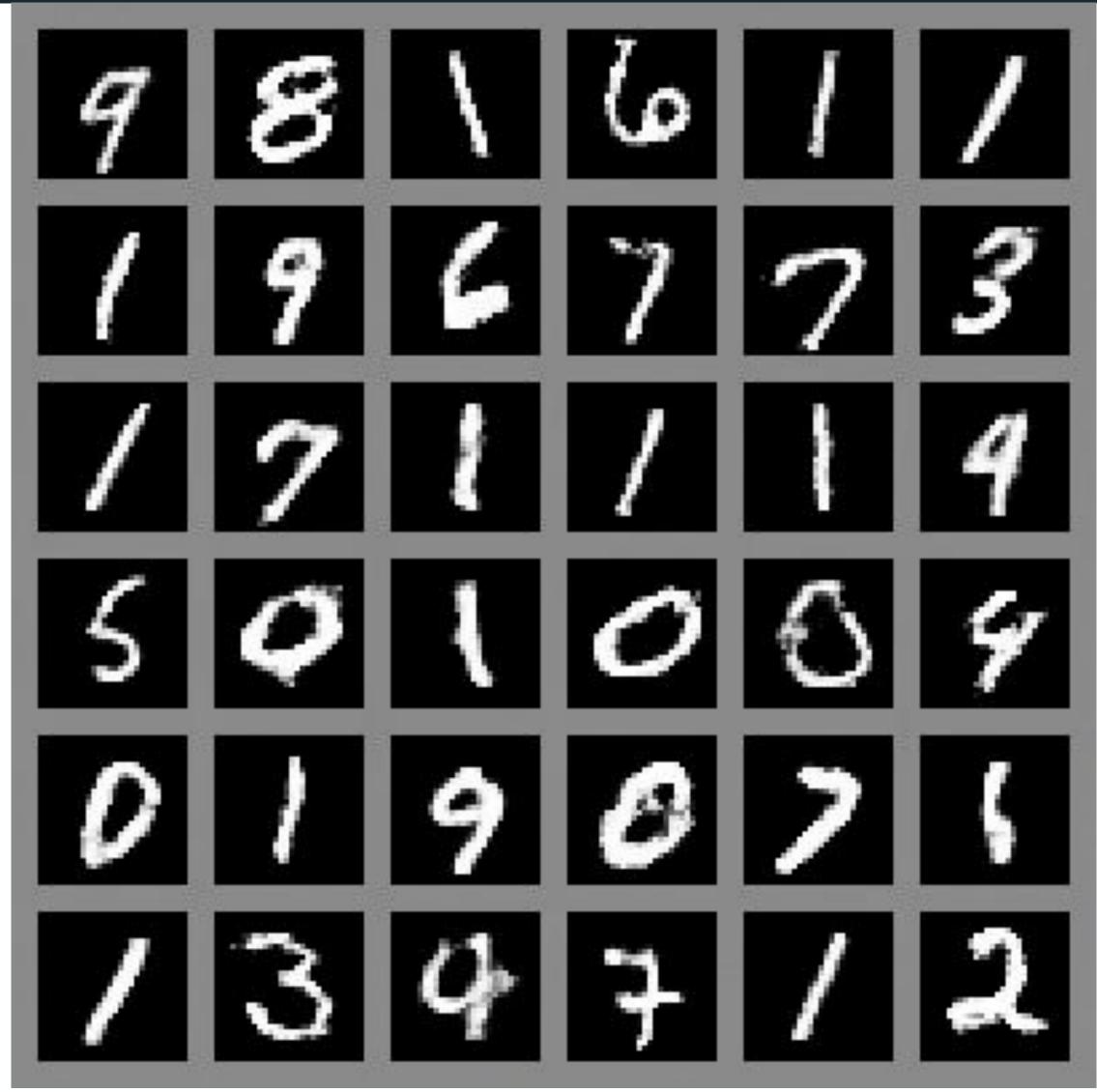
• In practice, Goodfellow et al (2014) advocate the heuristic

] +
$$\mathbb{E}_{\tilde{\boldsymbol{x}} \sim \mathbb{P}_g} [\log(1 - D(\tilde{\boldsymbol{x}}))].$$

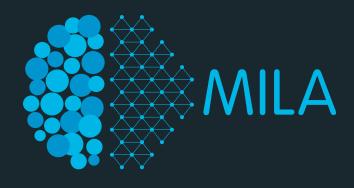
However, this modified loss function can still misbehave in

24

GAN samples

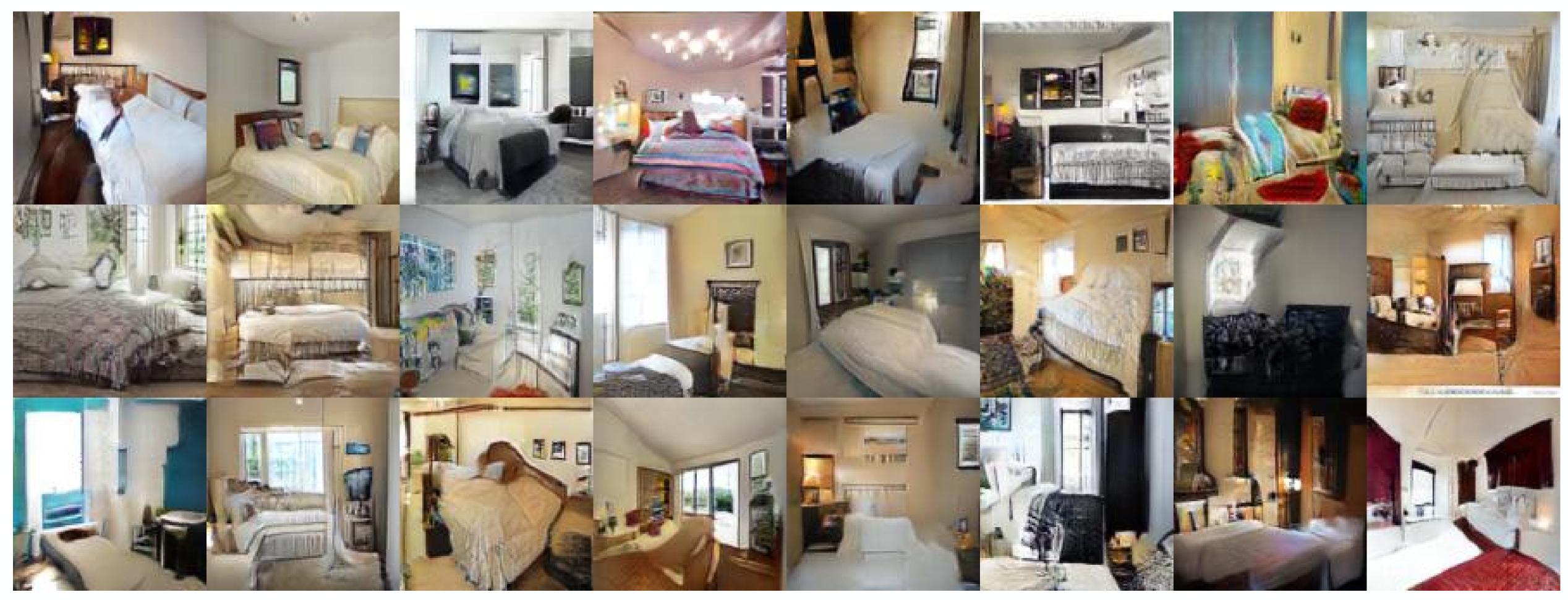


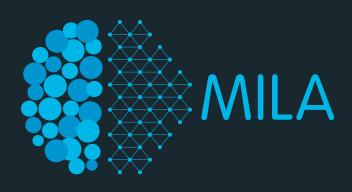
MNIST



CIFAR-10

LEGST-SCUCIES GAN Xudong Mao, Qing Li[†], Haoran Xie, Raymond Y.K. Lau and Zhen Wang, ArXiv, Feb. 2017



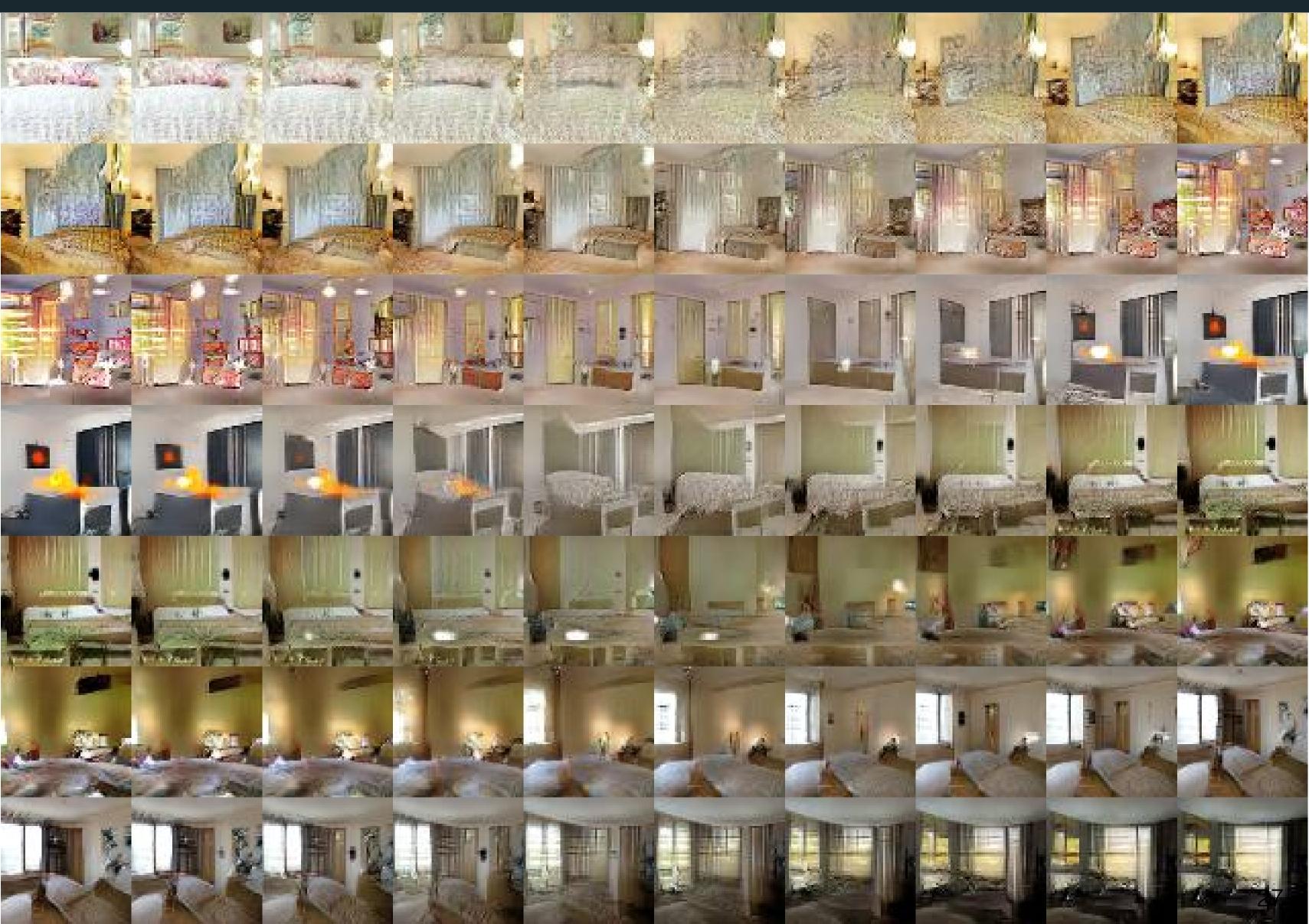


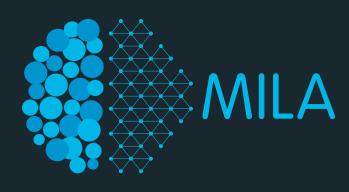
128x128 LSUN bedroom scenes

DCGAN samples (Radford, Metz and Chintala; 2016)

Z-space interpolations

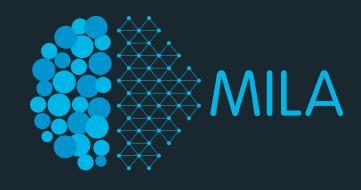
LSUN bedroom scenes

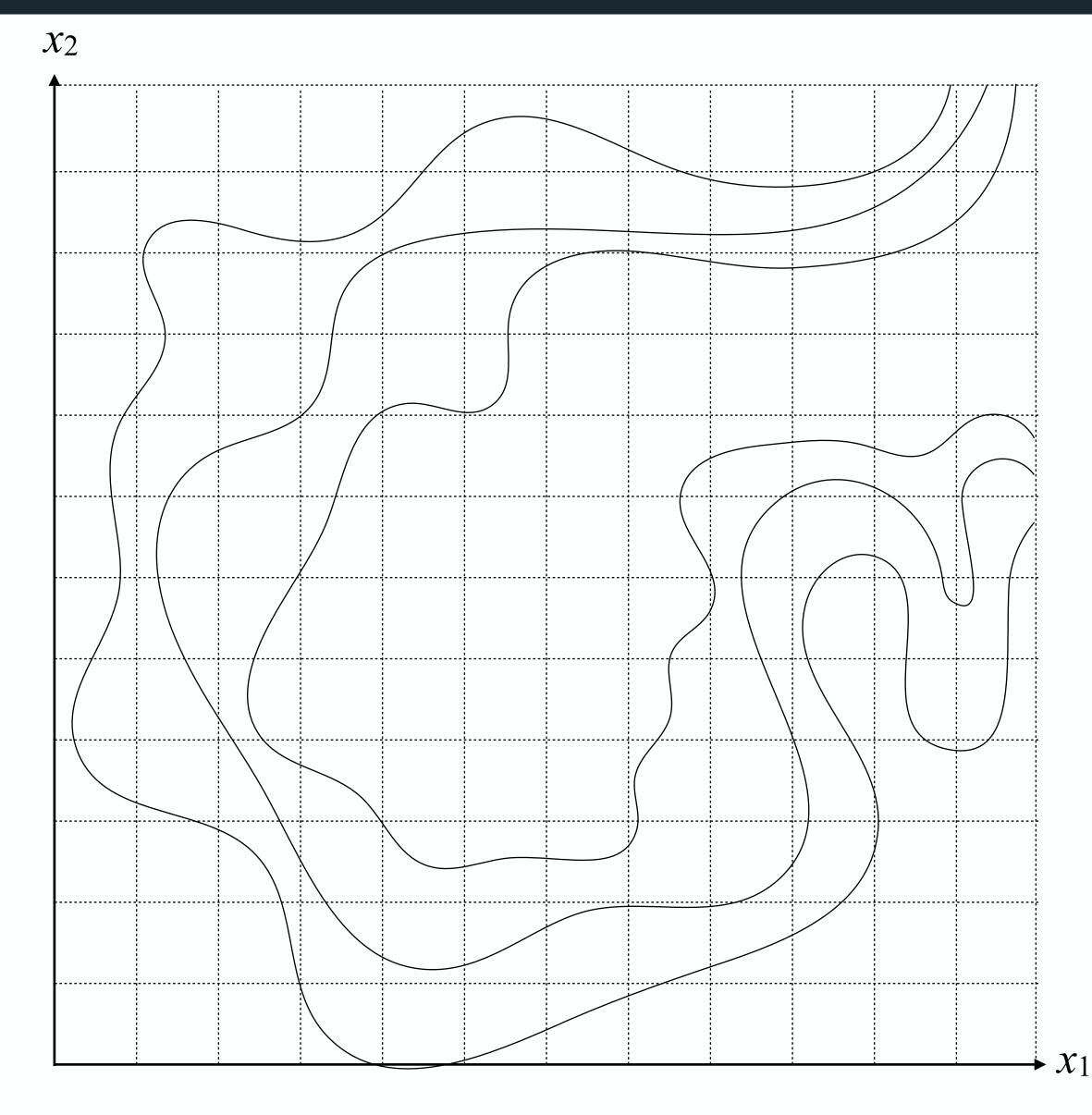




What makes GANs special?

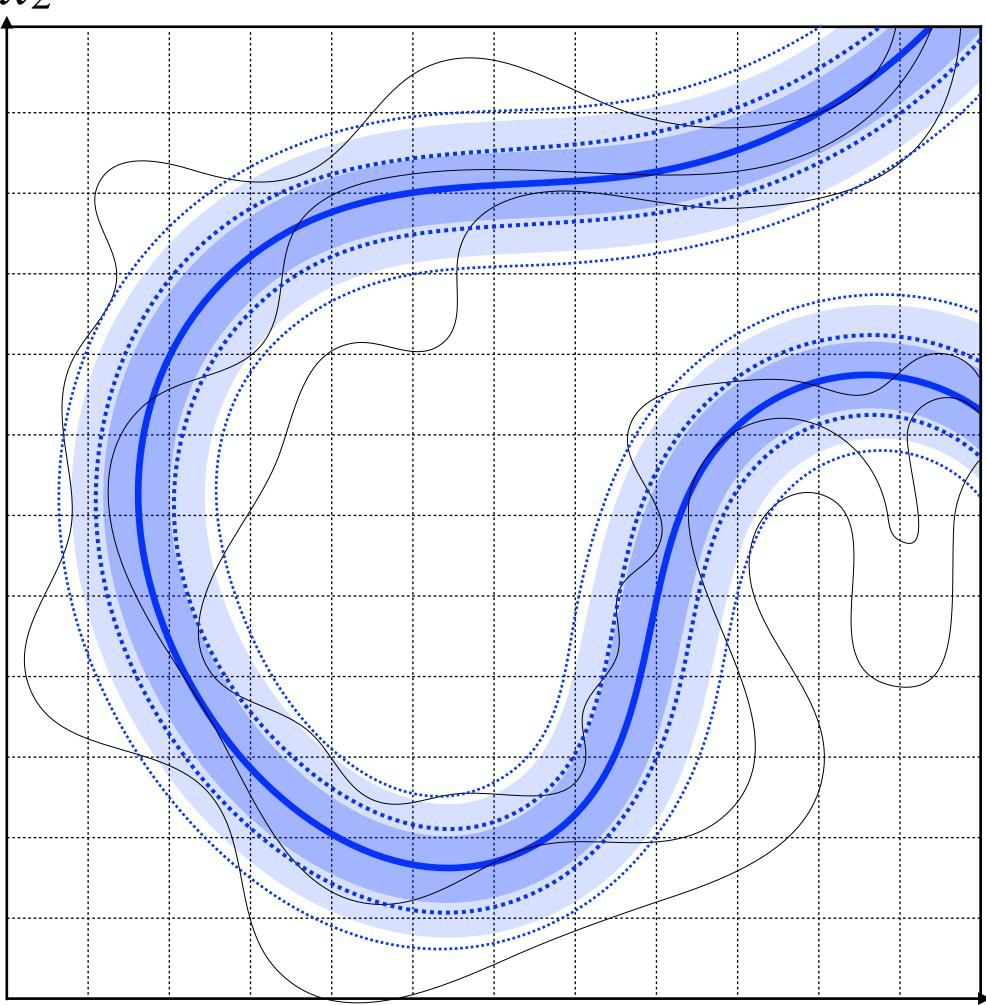
Cartoon of the Image manifold:





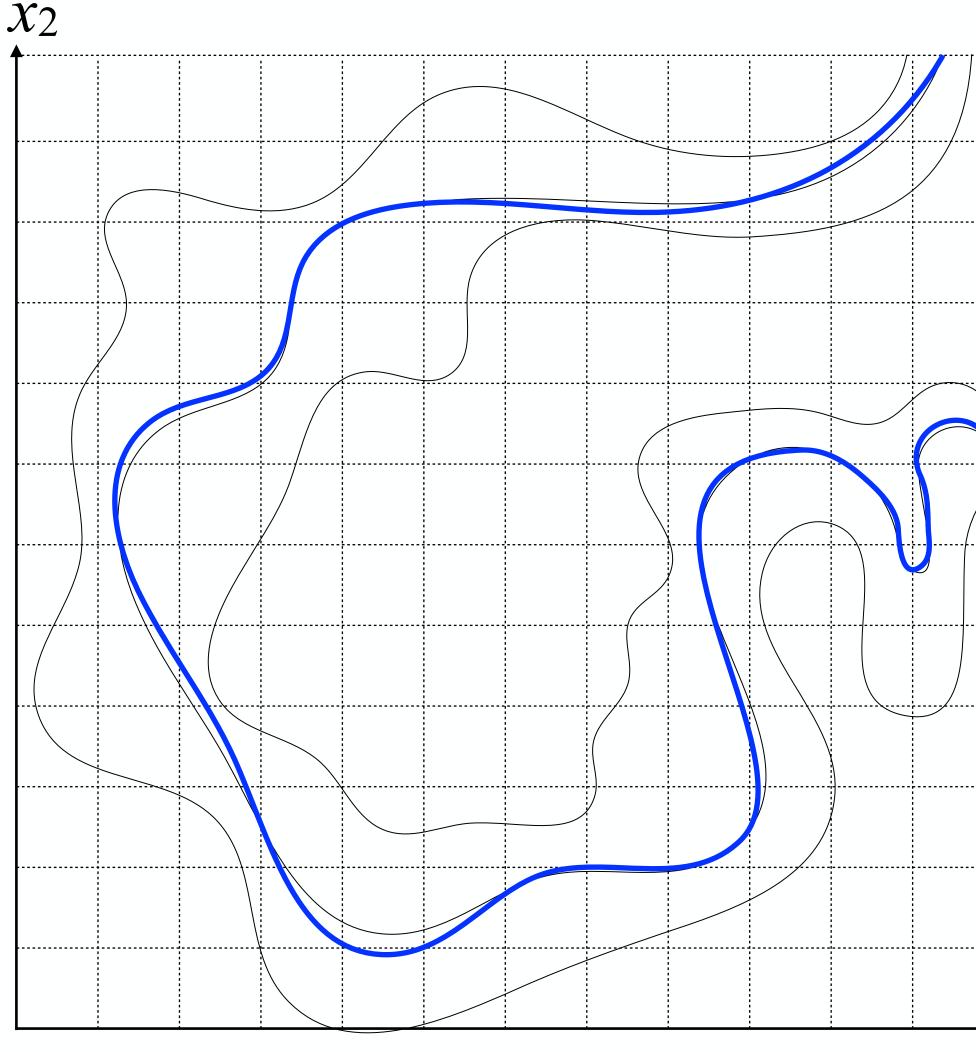
What makes GANs special?

 \mathcal{X}_1



more traditional max-likelihood approach

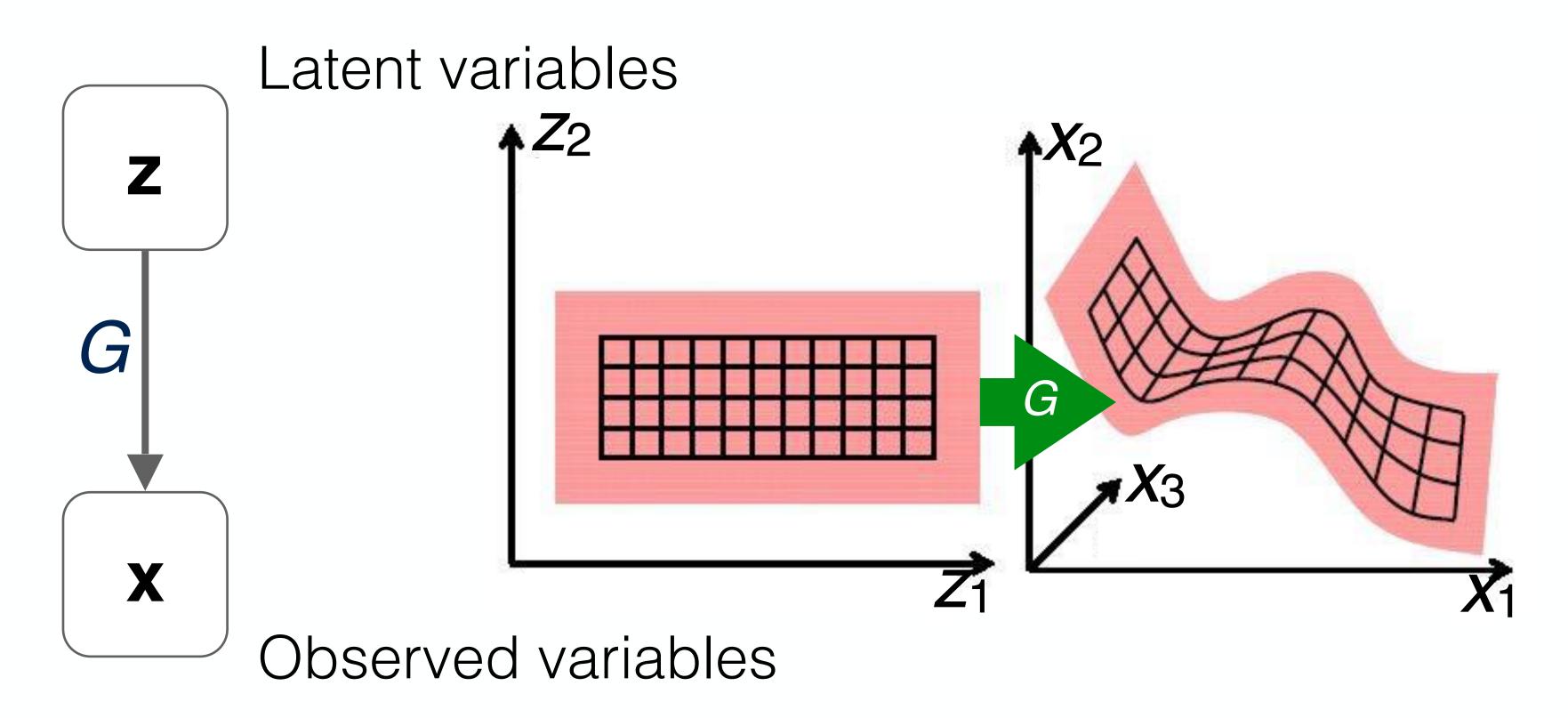


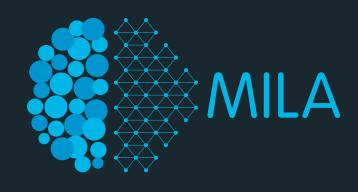


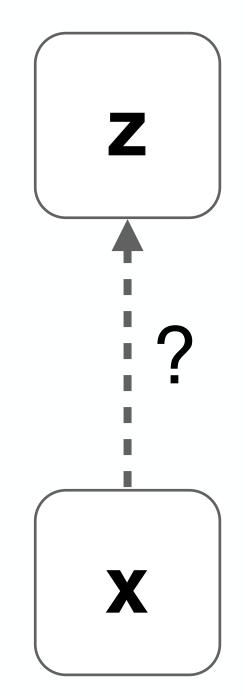
GAN

But what about inference...

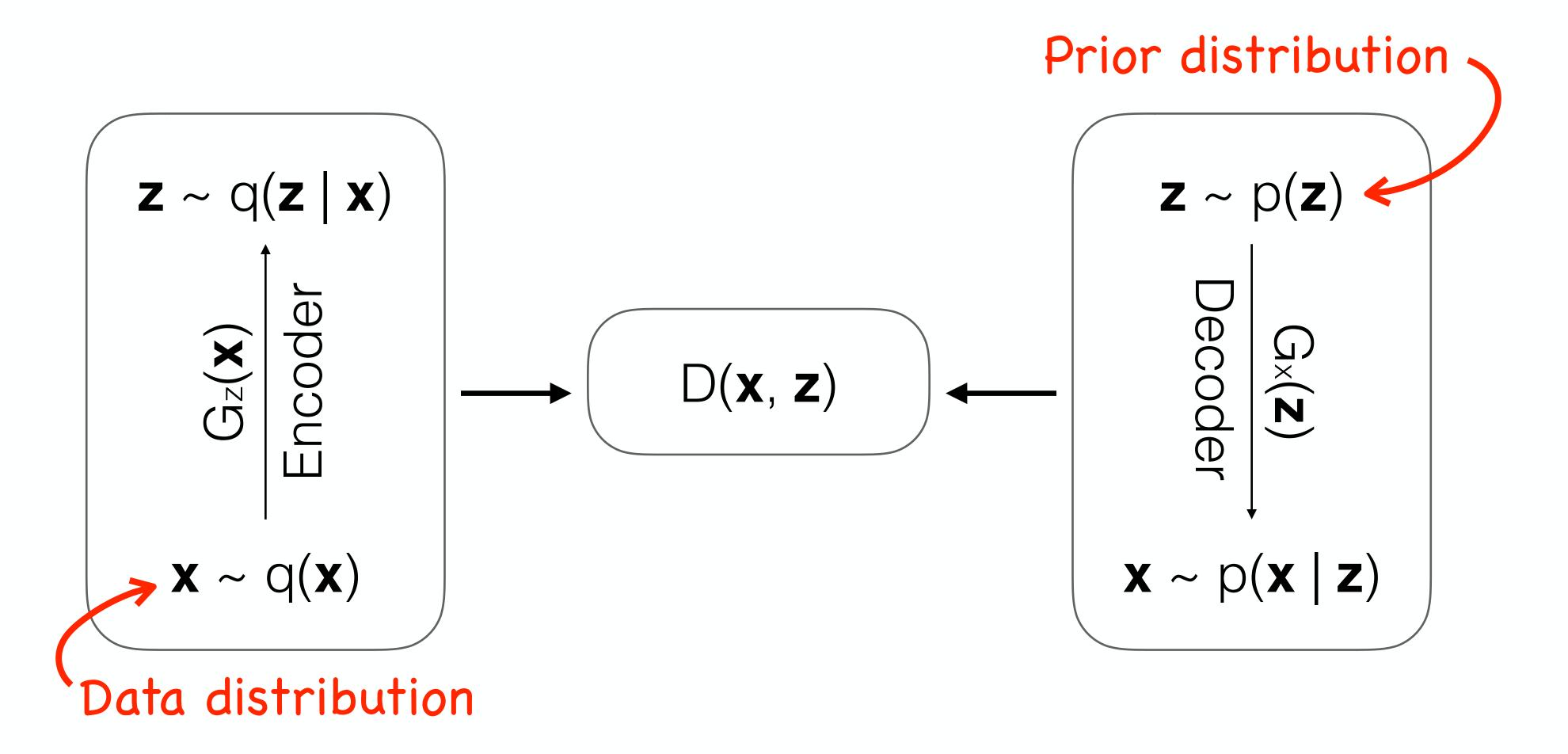
Can we incorporate an inference mechanism into GANs? \bullet



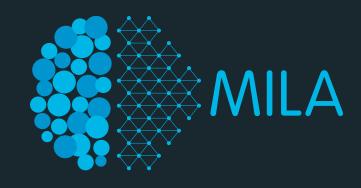




ALI / BiGAN: model diagram



- ALI: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro, Ben Poole, Alex Lamb, Martin Arjovsky (2016) ADVERSARIALLY LEARNED INFERENCE, arXiv:1606.00704, ICLR 2017

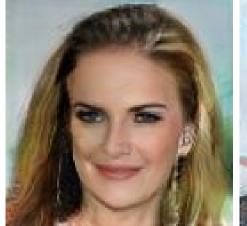


• BIGAN: Donahue, Krähenbühl and Darrell (2016), ADVERSARIAL FEATURE LEARNING, arXiv:1605.09782, ICLR 2017

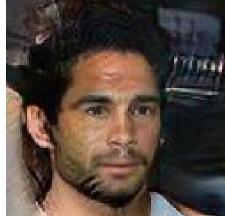
31

Hierarchical ALI

CelebA-128X128



Model samples

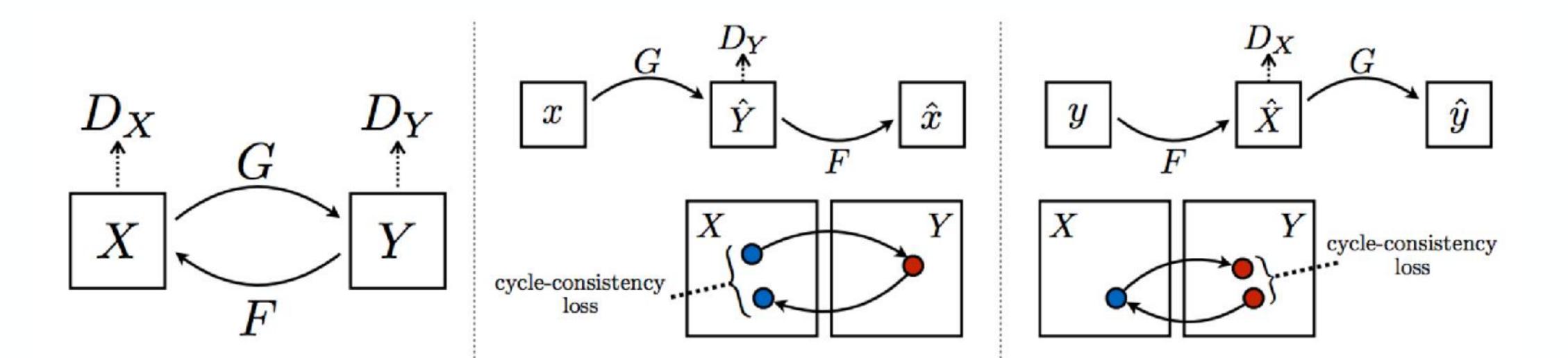


Reconstructions given z_1 , z_2

Reconstructions given *z*₂

cycleGAN: Adversarial training of domain transformations

- CycleGAN learns transformations across domains with unpaired data.
- Combines GAN loss with "cycle-consistency loss": L1 reconstruction.



Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017.

Image credits: Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using

CycleGAN for unpaired data

Monet C Photos

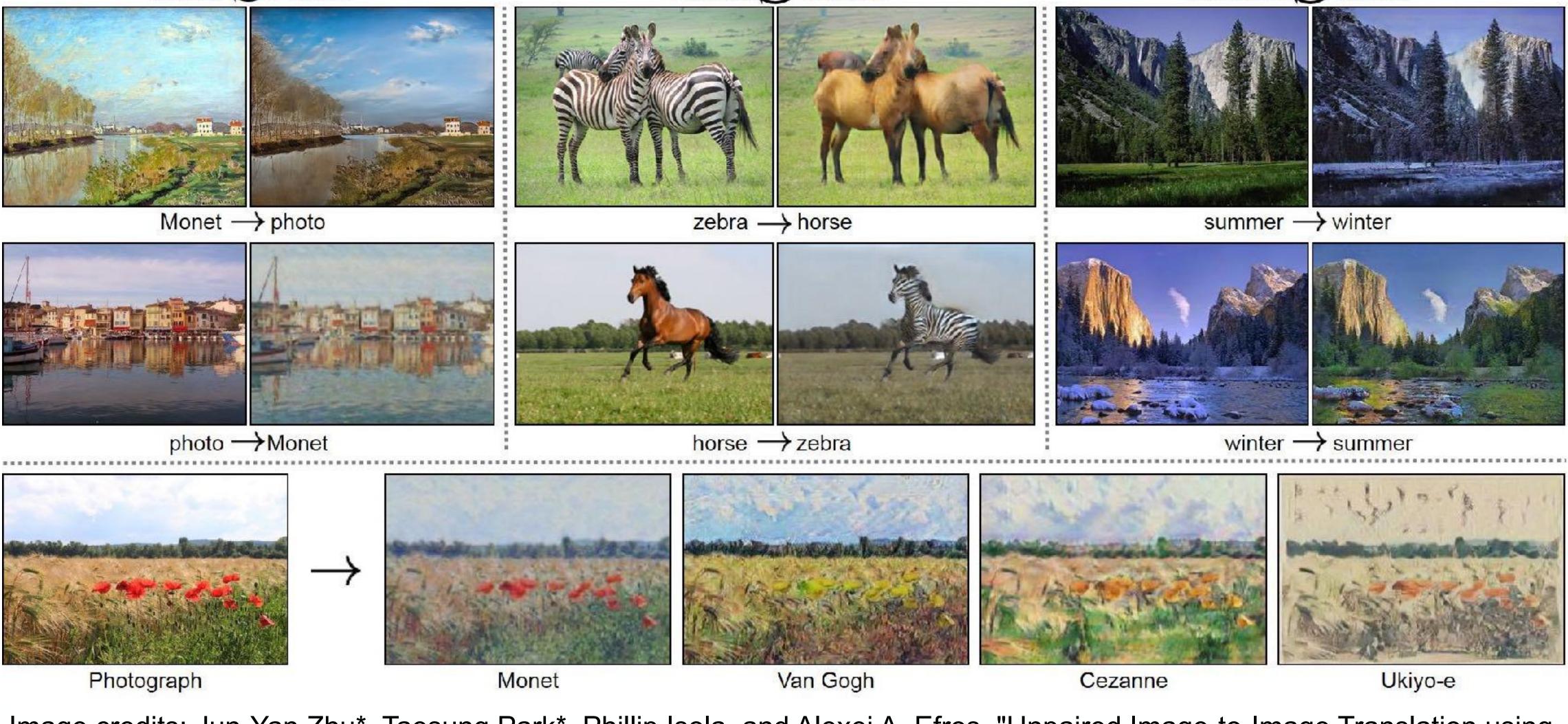
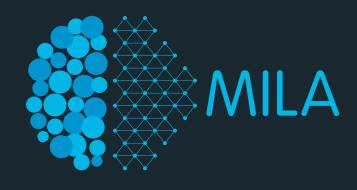


Image credits: Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017.

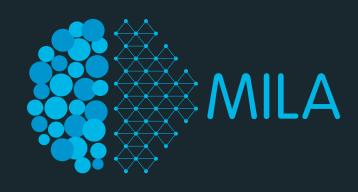


Zebras C Horses

Summer C Winter

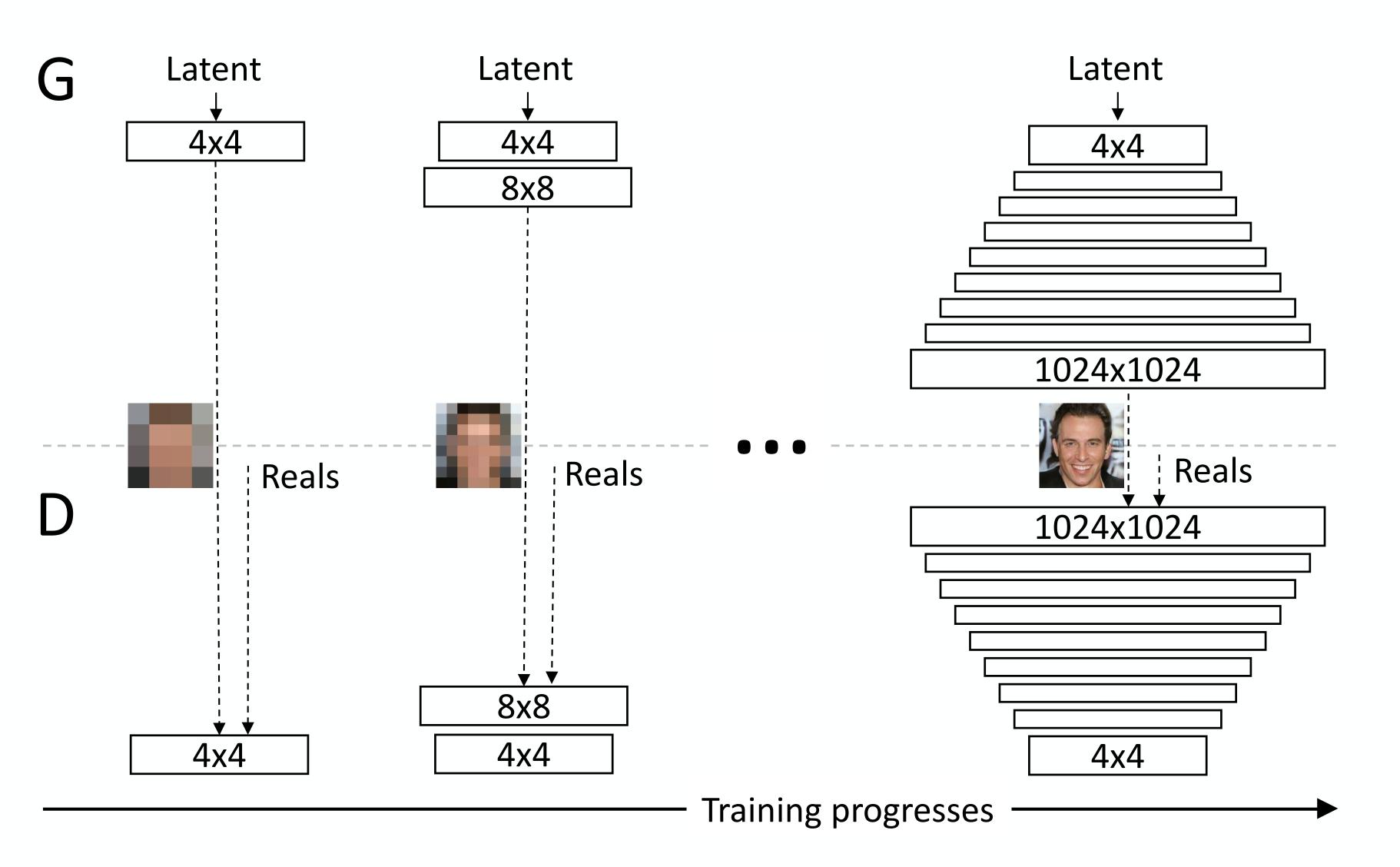
PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION (Kerras et al. from NVIDIA, 2017)

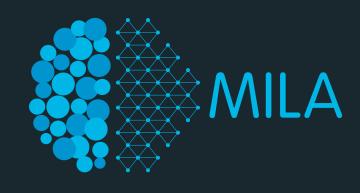
- Recent work from NVIDIA.
- Improves image quality by growing the model size throughout training.
- Samples from a model trained on the CelebA face dataset.

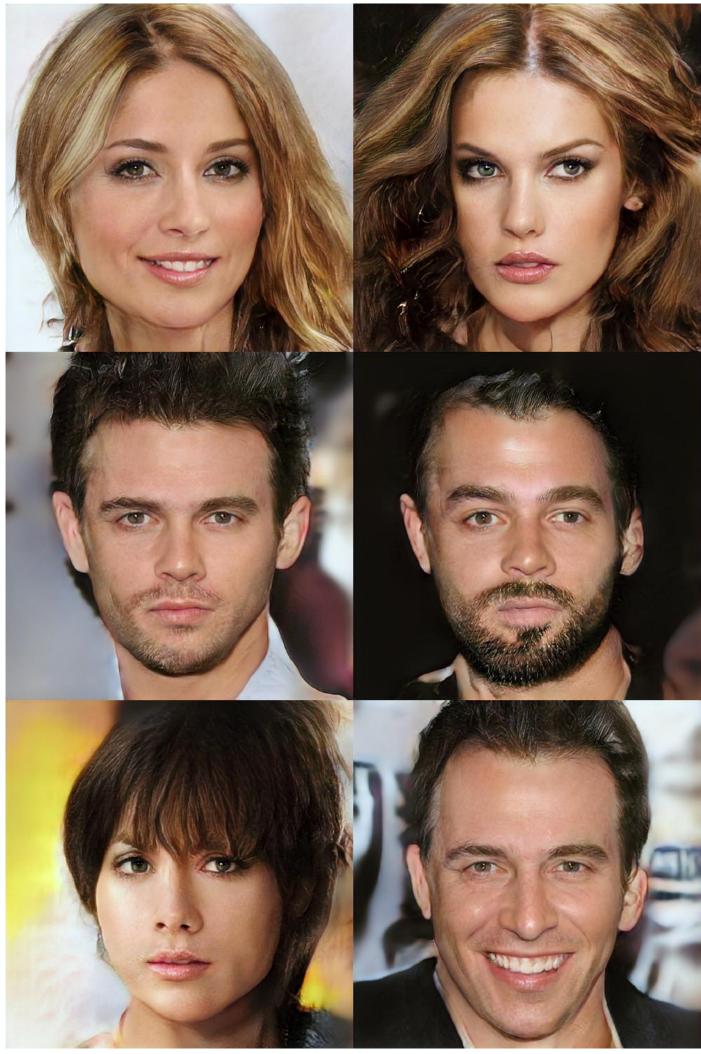


1024x1024 model samples

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION (Kerras et al. from NVIDIA, 2017)







PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION (Kerras et al. from NVIDIA, 2017)

- Recent work from NVIDIA.
- Improves image quality by growing the model size throughout training.
- Conditional samples from a model trained on the LSUN dataset

POTTEDPLANT

