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Final breakthrough, 358 years after its conjecture:

“It was so indescribably beautiful; it was so simple and
so elegant. | couldn’t understand how I'd missed it and
| just stared at it in disbelief for twenty minutes. Then
during the day | walked around the department, and
I’d keep coming back to my desk looking to see if it
was still there. It was still there. | couldn’t contain
myself, | was so excited. It was the most important
moment of my working life. Nothing | ever do again
will mean as much."
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Types of Deep Learning
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Philosophical Motivation for Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at
reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about states
and actions. This is a kind of brute-force “reasoning”.

I II u == m:zf:::gie‘ts For the full updated list of references visit: Course 6.5191: Lex Fridman: Januar y
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Agent and Environment

e At each step the agent:
* Executes action
* Receives observation (new state)
* Receives reward

e The environment:
* Receives action
* Emits observation (new state)

* Emits reward - :
nvironmen
Reward

Action

III' M Massachuselts  [q the full updated list of references visit: [80] Course 6.5191: Lex Fridman: January

Institute of . . .
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Examples of Reinforcement Learning

Reinforcement learning is a general-purpose framework for decision-making:
* An agent operates in an environment: Atari Breakout
* An agent has the capacity to act

e Each action influences the agent’s future state

e Success is measured by a reward signal

e @Goalis to select actions to maximize future reward

Omrerecam  ©

I II W Massachusetts o the full updated list of references visit: [85] Course 6.5191: Lex Fridman: January

Institute of . . .
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Examples of Reinforcement Learning

Cart-Pole Balancing

* Goal —Balance the pole on top of a moving cart

» State — Pole angle, angular speed. Cart position, horizontal velocity.
* Actions — horizontal force to the cart

 Reward — 1 at each time step if the pole is upright

I BB Massachuselts For the full updated list of references visit: Course 6.5191: Lex Fridman: January
I I Institute of . . [ 1 66] i i i
Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Examples of Reinforcement Learning

nmme iz 1S R

Doom

* Goal —Eliminate all opponents

e State — Raw game pixels of the game
* Actions — Up, Down, Left, Right etc

* Reward — Positive when eliminating an opponent,
negative when the agent is eliminated

I II W Massachusetts o the full updated list of references visit: [166] Course 6.5191: Lex Fridman: January

Institute of . . .
II Tech'nomgv https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Examples of Reinforcement Learning

Bin Packing

« Goal - Pick a device from a box and put it into a container

« State - Raw pixels of the real world

« Actions - Possible actions of the robot

 Reward - Positive when placing a device successfully, negative otherwise

I II W Massachusetts o the full updated list of references visit: [166] Course 6.5191: Lex Fridman: January

Institute of . . .
II Tecr:nl:“ogv https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Examples of Reinforcement Learning

Human Life
« Goal - Survival? Happiness?
« State - Sight. Hearing. Taste. Smell. Touch.

 Actions - Think. Move.
* Reward — Homeostasis?

I II BB Massachuselts For the full updated list of references visit: Course 6.5191: Lex Fridman: January

Institute of . . .
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Key Takeaways for Real-World Impact

* Deep Learning:
* Fun part: Good algorithms that learn from data.
* Hard part: Huge amounts of representative data.

* Deep Reinforcement Learning:
* Fun part: Good algorithms that learn from data.
* Hard part: Defining a useful state space, action space, and reward.
* Hardest part: Getting meaningful data for the above formalization.

“""‘;7"“5 For the full updated list of references visit: Course 6.5191: Lex Fridman:
ogy https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu

January
2018
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S0, Ao, 7T1,S1,AA1, 72, ..

Markov Decision Process

Sn—1,An—-1,Tn Sn

T A T
state Terminal state
action
reward
I II u = m:::ﬁ:::?eﬁs For the full updated list of references visit: Course 6.5191: ‘ Lgx Fridmanf January
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Major Components of an RL Agent

An RL agent may include one or more of these components:
* Policy: agent’s behavior function
 Value function: how good is each state and/or action

* Model: agent’s representation of the environment

S0, A0, 71,S1,A1, 72, vos, Sn—=1,An—-1,T1, S

t t t
state Terminal state
action
reward
III' B Massachusett For the full updated list of references visit: Course 6.5191: Lex Fridman: January
Institute of L. . . . z
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning friuman@mit.edu

2018
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Robot in a Room

+1
-1 up
80%
10%
START 10%

* reward +1 at [4,3], -1 at [4,2]

* reward -0.04 for each step

* what’s the strategy to achieve max reward?

 what if the actions were deterministic?

move UP
move LEFT
move RIGHT

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

Course 6.5191:

Intro to Deep Learn

ing

Lex Fridman:

fridman@mit.edu



Is this a solution?

-

1)

*

* only if actions deterministic
* not in this case (actions are stochastic)

* solution/policy

actions: UP, DOWN, LEFT, RIGHT

When actions are stochastic:

upP

80%
10%
10%

* mapping from each state to an action

move UP
move LEFT
move RIGHT

Course 6.5191:
Intro to Deep L

Lex Fridman:

earning fridman@mit.edu



Optimal policy

tions: UP, DOWN, LEFT, RIGHT
# # # +1 o ’ ’ ’

When actions are stochastic:

| | w

80% move UP

« « 10% move LEFT
10% move RIGHT

=)

=)
t

I u- m:ﬁ“t":‘:ens Course 6.5191: Lex Fridman: Januar:
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Reward for each step -2

I H B Massachusetts
I I Institute of
Technology
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Reward for each step: -0.1
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Reward for each step: -0.04
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Reward for each step: -0.01
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Reward for each step: +0.01
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-
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Value Function

e Future reward R=ri+ry+r3+ -+ 1y

Re=r+npt+tngpt+t-+n

e Discounted future reward (environment is stochastic)

Ry = ri+yrip +y°rya+ - +y"iry,
=1+ V(41 T V(T2 + )
=7+ YR¢41

e A good strategy for an agent would be to always choose
an action that maximizes the (discounted) future reward

HEm  Massachusetts Course 6.5191: Lex Fridman: Januar
||| JI  Insuruteor References: [84]
Technology

Intro to Deep Learning fridman@mit.edu 2018



Q-Learning

» State-action value function: Q%(s,a)

* Expected return when starting in s,
performing a, and following &t

* Q-Learning: Use any policy to estimate Q that maximizes future reward:
* Qdirectly approximates Q* (Bellman optimality equation)
* Independent of the policy being followed
* Only requirement: keep updating each (s,a) pair

Qr11(st, at) = Qt(st, at)+a (Rt—l—l + 7 max Qe(st41, a) — Qe(st, at))

Old State

Masﬁs""';fe“s Course 6.5191: Lex Fridman:
nology Intro to Deep Learning fridman@mit.edu

January
2018



Exploration vs Exploitation

 Deterministic/greedy policy won’t explore all actions
* Don’t know anything about the environment at the beginning
* Need to try all actions to find the optimal one
 g-greedy policy
*  With probability 1-€ perform the optimal/greedy action, otherwise random action
* Slowly move it towards greedy policy: € -> 0

PE =

i yF LD
‘uu{n',',

I II H B Massachusetts Course 6.5191: Lex Fridman: January

Institute ot . ) .
Tgts:r:nlgli:y Intro to Deep Learning fridman@mit.edu 2018



Qet1(st, ar) = Qe(st, at)+a (Rt-l—l + 'mgx Rt(st+1,a) — Qe(st, at))

Q-Learning: Value Iteration

Old State
Al | A2 A3 A4
S1 +1 +2 -1 0
S2 +2 0 +1
S3 -1 +1 0

Reward

initialize Q[num states,num actions] arbitrarily

observe initial state s

repeat
select and carry out an action a
observe reward r and new state s’

Qls,al = Q[s,al + alr + y max,, Q[s',a’'] - Qls,al)

s = s’
until terminated

H B Massachusetts
I I Institute of
Technology

References: [84]

Course 6.5191:
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Lex Fridman:
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Q-Learning: Representation Matters

* In practice, Value Iteration is impractical
 Very limited states/actions
e Cannot generalize to unobserved states

* Think about the Breakout game

 State: screen pixels
* Image size: 84 X 84 (resized)
° Consecutive 4 images 25684X84X4 rows in the Q'table!

* Grayscale with 256 gray levels

:\llassachusetts Course 6.5191: Lex Fridman:
n u
T

Refe rences: [83, 84] Intro to Deep Learning fridman@mit.edu

January
2018



Philosophical Motivation for Deep Reinforcement Learning

Takeaway from Supervised Learning:

Neural networks are great at memorization and not (yet) great at
reasoning.

Hope for Reinforcement Learning:

Brute-force propagation of outcomes to knowledge about states
and actions. This is a kind of brute-force “reasoning”.

Hope for Deep Learning + Reinforcement Learning:

General purpose artificial intelligence through efficient
generalizable learning of the optimal thing to do given a
formalized set of actions and states (possibly huge).

I II u == m:ﬁf:::‘;sens For the full updated list of references visit: Course 6.5191: Lex Fridman: Januar
II Technology

https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Deep Learning is Representation Learning

(aka Feature Learning)

Output

(object identity)

Deep
Learning

3rd hidden layer
(ohject parts)

Representation
Learning

2nd hidden layer
(corners and

contours)

Machine
Learning

1st hidden layer

(edges)

Artificial
Intelligence

Visible layer

(input pixels)

Intelligence: Ability to accomplish complex goals.

Understanding: Ability to turn complex information to into simple, useful information.

I II W Massachusetts o the full updated list of references visit: [20] Course 6.5191: Lex Fridman: January

Institute of . . .
II Tecr:nl:“ogv https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Use a function (with parameters)
to approximate the Q-function

DQN: Deep Q-Learning

* Linear

* Non-linear: Q-Network

§ —

Function — Qsa)
a——|Approximatori, _iargets or errors

Q(s,a;0) = Q*(s,a)

Q-value 1

S State \
/ Network Am » S State » Network Q-value 2
a  Action
Q-value 3
I o™ e ot e eerencss [83] e o oo tearning emanGmiiesy 2018
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Deep Q-Network (DQN): Atari

Convolution
v

Convolution
v

Fully cgnnected

'n
=X
<
8
1S
=
@
o
Q
@
Q

\Ncm:ut}

‘,D‘D i{g /B A\ A
D D E::‘é / I:l ° ° ° n
&[] » 9 N
o] @ Q .
L 08 a0\ ° ° °
DI:I ;fg ‘ O ! i 1 /)
\ _é :fig L] L] L]
Dl:l "E “.‘\D : : :
Layer Input Filter size | Stride Num filters | Activation | Output
conv1 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 | 4x4 2 64 RelLU 9x9x64
conv3 9x9x64 3x3 1 64 RelLU 7X7x64
fcd 7x7x64 512 RelLU 512
fc5 512 18 Linear 18

Mnih et al. "Playing atari with deep reinforcement learning." 2013.

H B Massachusetts

Institute of
Technology

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

[83]
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DQN and Double DQN (DDQN)

* Loss function (squared error):

L = E[(r + ymax,Q(s",a’) — Q(s,a))"]

e Y
target prediction

* DQN: same network for both Q

 DDQN: separate network for each Q

* Helps reduce bias introduced by the inaccuracies of
Q network at the beginning of training

I II u == m:ﬁ:::“sens For the full updated list of references visit: [83] Course 6.5191: Lex Fridman: Januar
II https://selfdrivingcars.mit.edu/references
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DQN Tricks

Experience Replay

» Stores experiences (actions, state transitions, and rewards) and creates
mini-batches from them for the training process

Fixed Target Network

* Error calculation includes the target function depends on network
parameters and thus changes quickly. Updating it only every 1,000

steps increases stability of training process.

Q(Sna) : Q(s,,a) +a |71 + 7111;”( Q(3t+1,1))

target Q function in the red rectangular is fixed

Reward Clipping

* To standardize rewards across games by setting
+1 and all negative to -1.

Skipping Frames

» Skip every 4 frames to take action

= Q(Sh a')

all positive rewards to

For the full updated list of references visit:
i
o;v https://selfdrivingcars.mit.edu/references [83’ 167]

Course 6.5191: Lex Fridman:
Intro to Deep Learning fridman@mit.edu
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DQN Tricks

* Experience Replay

» Stores experiences (actions, state transitions, and rewards) and creates
mini-batches from them for the training process

* Fixed Target Network

* Error calculation includes the target function depends on network

parameters and thus changes quickly. Updating it only every 1,000
steps increases stability of training process.

Q(st,a) « Q(8¢,a) + a 141 + 'ym}e)lx R(8t+1,p)|— Q(s¢,a)

target Q function in the red rectangular is fixed

Replay X x
Target X x
Breakout 316.8 240.7 10.2 3.2
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894 .4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0
I s oy oot (83, 167)

Intro to Deep Learning fridman@mit.edu 2018
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Deep Q-Learning Algorithm

initialize replay memory D
initialize action-value function Q with random weights
observe initial state s
repeat
select an action a
with probability € select a random action
otherwise select a = argmax,-Q(s,a’)
carry out action a
observe reward r and new state s’
store experience <s, a, r, s’> in replay memory D

sample random transitions <ss, aa, rr, ss’> from replay memory D
calculate target for each minibatch transition

if ss’ is terminal state then tt = rr

otherwise tt = rr + ymax,.Q(ss’, aa’)
train the Q network using (tt - Q(ss, aa))? as loss

s = s'
until terminated

I II Wmm Massachusetts  [or the full updated list of references visit: [83 167] Course 6.5191: Lex Fridman: January
?

Institute of . . .
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Atari Breakout
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Policy Gradients (PG)

* DQN (off-policy): Approximate Q and infer optimal policy
* PG (on-policy): Directly optimize policy space

raw pixels hidden layer

probability of

&t’ﬁ'ﬁ . moving UP Good illustrative explanation:
ﬁv}#&r,m http://karpathy.github.io/2016/05/31/rl/
s AYav. AN .

ST VA 3

}.{!}“?ﬁ"w “Deep Reinforcement Learning:

#‘%ﬁ Pong from Pixels”
’Oﬁt". g

ZaYs

Policy Network

Massachusetts For the full updated list of references visit: [63] Course 6.5191: Lex Fridman: January
Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Policy Gradients — Training

Policy Gradients: Run a policy for a while. See what actions led to high rewards. Increase their probability.

uP DOWN uP uP DOWN_ o DOWN_ DOWN uP WIN
DOWN o UP uP DOWN uP UP LOSE
UP uP DOWN o DOWN_  DOWN_ o DOWN up LOSE
0N gl g P glOWg P o U o WIN
"

* REINFORCE (aka Actor-Critic): Policy gradient that increases probability of
good actions and decreases probability of bad action:

VoE|R:| = E[VglogP(a)R;]

* Policy network is the “actor”

* R,is the “critic”

I BB Massachuselts For the full updated list of references visit: Course 6.5191: Lex Fridman: January
Institute of . . [63 204]
II Technology https://selfdrivingcars.mit.edu/references ’

Intro to Deep Learning fridman@mit.edu 2018
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Policy Gradients (PG)

* Pros vs DQN:

* Able to deal with more complex Q function
* Faster convergence

 Since Policy Gradients model probabilities of actions, it is capable of
learning stochastic policies, while DQN can’t.

* Cons:
e Needs more data

12 A
—— DDQN

A2C

o] B ”,
1 WW" ‘ Il \/W W

Average Kill Counts
[=)]

2 -
0 -
0 2500 5000 7500 10000 12500 15000 17500 20000
Episodes
I II B Massachuselts  For the full updated list of references visit: [63] Course 6.5191: Lex Fridman: January
Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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Game of Go

Dia. 4 Dia. b Dia. 6 .
liberties atari capture result
Game size Board size N 3N Percent legal legal game positions (A0947??}[”]
1x1 1 3 33% 1
2x2 4 81 70% 57
3x3 9 19,683 64% 12,675
4x4 16 | 43,046,721 56% 24,318,165
5x5 25| 8.47x10" 49% 4.1x10M
9x9 81| 4.4x10%8 23.4% 1.039x1038
13x13 169 | 4.3x1080 8.66% 3.72497923x107°
19x19 361 | 1.74x10172 1.196% 2.08168199382x10170
I o™ et cherenee [170] mro to Desplearing  fidman@miteds 2018
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Human expert
positions

AlphaGo (2016) Beat Top Human at Go

Supervised Learning
policy network

‘ Self Play ’

Reinforcement Learning
policy network

‘ Self Play ’

Self-play data

AlphaGo (Mar 2016)

DeepMind challenge match

4-1

Nature match

AlphaGo (Oct 2015)

5-0

KGS

Crazy Stone and Zen

Lee Sedol (9p)
Top player of
past decade

Fan Hui (2p)
3-times reigning
Euro Champion

Amateur
humans

Value network

H B Massachusetts

Institute of
Technology

For the full updated list of references visit:
https://selfdrivingcars.mit.edu/references

[83]
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AlphaGo Zero (2017): Beats AlphaGo

5000 -

—— e S S RS R S e R e R S S e S R e S e e e e S S S e S e e

4000 -
3000 -
2000 -

1000 -

Elo Rating

-1000 -

-2000 -

T T T T I 1

0 5 10 15 20 25 30 35 40

-

=== AlphaGo Zero 40 blocks  se=s AlphaGo Lee ssse AlphaGo Master

Course 6.5191: Lex Fridman: January

I BEm Massachusatis For the full updated list of references visit: [149]
Intro to Deep Learning fridman@mit.edu 2018
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AlphaGo Zero Approach

 Same as the best before: Monte Carlo Tree Search (MCTS)

» Balance exploitation/exploration (going deep on promising positions or
exploring new underplayed positions)

* Use a neural network as “intuition” for which positions to
expand as part of MCTS (same as AlphaGo)

a Selection b  Expansion c Evaluation d Backup
maN Q+ulP) | - al Iy |
M ot H et M T4 H T

| ; ( "‘Jﬂ" 1 T / f
Q +u(P) Aax ‘ . : ﬁi <£¢
1

oA
I
(8)

183
13

N

I II u == m:ﬁ:t"::sens For the full updated list of references visit: [170] Course 6.5191: Lex Fridman: Januar
II Technology https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu 2018
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AlphaGo Zero Approach

 Same as the best before: Monte Carlo Tree Search (MCTS)

» Balance exploitation/exploration (going deep on promising positions or
exploring new underplayed positions)

* Use a neural network as “intuition” for which positions to
expand as part of MCTS (same as AlphaGo)

e “Tricks”

* Use MCTS intelligent look-ahead (instead of human games) to improve
value estimates of play options

e Multi-task learning: “two-headed” network that outputs (1) move
probability and (2) probability of winning.

* Updated architecture: use residual networks

of For the full updated list of references visit: [170] Course 6.5191: Lex Fridman:
ogy https://selfdrivingcars.mit.edu/references Intro to Deep Learning fridman@mit.edu

January
2018
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DeepStack first to beat professional poker players (2017)
(in heads-up poker)

(INVERSE)
BUCKETING BUCKETING
r CARD
FEEDFORWARD ZERD-SUM COUNTERFACTUAL
NEURAL NET NEURAL NET VALUES
__\ T —
= Y 132 T
Togg = e [ -
500 b0 o e 1000 Toog . Ay
I I . . sis .
A
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NEEE il S N
| B
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[ | [=rnnnnl ~B-
2.
| mh 2 Iy
By | n:;:
?ﬁ“"“‘--.. I | h-1.‘-‘.‘-"""‘--- I.‘-l‘)-‘h_"""‘“--. v * .
) 1 by . 22
s W
—— \_\-\—\, -_--_-\_---: : el Hﬂ"" _‘_\R-\-\-_ By : H-I‘;SH
Input 7 Hidden Layers Output Zero-sum Output
Bucket « fully connected Bucket Error Counterfactual
ranges * linear, PReLU values values
I II B Massachuselts  For the full updated list of references visit: [150] Course 6.5191: Lex Fridman: January
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To date, for most successful robots operating in the real world:
Deep RL is not involved

(to the best of our knowledge)
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To date, for most successful robots operating in the real world:
Deep RL is not involved

(to the best of our knowledge)

:E?:t":oie‘ts For the full updated list of references visit: [169] Course 6.5191: Lex Fridman:
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Unexpected Local Pockets of High Reward

) G D@

I II Wmm Massachusetts  [or the full updated list of references visit: [63 64] Course 6.5191: Lex Fridman: January
?
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Al Safety

Risk (and thus Human Life) Part of the Loss Function
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DeepTraffic: Deep Reinforcement Learning Competition

DeepTraffic

Main Page - Leaderboard - About DeepTraffic
Americans spend 8 billion hours stuck in traffic every year.
Deep neural networks can help!

5 IanesSide = 3;

6 patchesAhead = 3@; —
U 7 patchesBehind = 18;

8 trainIterations = 18608;

| 1@ // the number of other autonomous vehicles controlled by your network
Q 11 otherAgents = @; // max of 9

13 var num_inputs = (lanesSide * 2 + 1) * (patchesAhead + patchesBehind);

Apply Code/Reset Net Save Code/Net to File Load Code/Net from File

8 Q3

Submit Model to Competition

72 mon - U
Cars Passed: U 31;58 = <io — =
= % y i ==

195 i EY,

= St

n] 2HH

U -0.55..J.
ok oak ozk ogk ogk osk ok ok o8k osk ik

L B
l:. )

Value Function Approximating Neural Network:
input(280)

fc(50) rel
| | ||

= LOAD CUSTOM IMAGE

0

Road Overlay: fed ¥

None v

" 3 REQUEST VISUALIZATION
Simulation Speed:

Fast v ehicle skins

https://selfdrivingcars.mit.edu/deeptraffic

Course 6.5191:
Intro to Deep Learning
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