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Final Class Project

Option 1: Proposal Presentation 
• Groups of 3 or 4 
• Present a novel deep learning 

research idea or application 
• 1 slide, 1 minute 
• List of example proposals on 

website: CLICK HERE
• Presentations on Friday, Feb 2
• Submit groups by TODAY at 

9pm to be eligible 
• Submit slide by Thursday 9pm 

to be eligible

• Judged by a panel of industry judges
• Top winners are awarded: 

1x NVIDIA Titan Xp
MSRP: $1200

2x NVIDIA Titan TX2
MSRP: $600

3x Google Home
MSRP: $300
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Final Class Project

Option 2: Write a 1-page review 
of a deep learning paper (single 
spaced)
• Suggested papers listed on 

website: CLICK HERE
• Grade is based on clarity of 

writing and technical 
communication of main ideas

Option 1: Proposal Presentation 
• Groups of 3 or 4 
• Present a novel deep learning 

research idea or application 
• 1 slide, 1 minute 
• List of example proposals on 

website: CLICK HERE
• Presentations on Friday, Feb 2
• Submit groups by TODAY at 

9pm to be eligible 
• Submit slide by Thursday 9pm 

to be eligible



6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/31/18

Thursday: Deep Learning in Industry

Urs Muller
Chief Architect Autonomous Driving
• End-to-End Learning for Self 

Driving Cars

D Sculley
• Issues with Image Classification
Shanqing Cai
• Faster TensorFlow Development 

with TF Debugger and Eager Mode

Industry sponsors recruitment booths setup in front of class

NVIDIA Google IBM Tencent
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Friday: Project Presentations

Lisa Amini
Director of IBM Research 
Cambridge & Acting Director 
of MIT/IBM AI Lab

Lin Ma
Technical Lead, Manager
• Computer Vision Meets 

Social Networks

Final Project Presentations
Pizza and Awards!

Afternoon Session: 



So far in 6.S191…
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Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to 
an arbitrary precision, any continuous function.

Hornik, K., et al. "Multilayer feedforward 
networks are universal approximators." (1989)
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Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to 
an arbitrary precision, any continuous function.

Caveats:

The number of 
hidden units may 
be infeasibly large

The resulting 
model may not 

generalize

Hornik, K., et al.  Neural Networks. (1989)
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History of Artificial Intelligence Hype



Limitations
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Rethinking Generalization

“Understanding Deep Neural Networks requires rethinking generalization”

dog banana dog tree

Zhang et al.  ICLR. (2017)
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Capacity of Deep Neural Networks

randomizationoriginal 
labels

completely 
random

accuracy

100%

0%

Training Set

Testing Set



6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/31/18

Capacity of Deep Neural Networks

randomizationoriginal 
labels

completely 
random

accuracy

100%

0%

Training Set

Testing Set



6.S191 Introduction to Deep Learning
introtodeeplearning.com

1/31/18

Capacity of Deep Neural Networks

randomizationoriginal 
labels

completely 
random

accuracy

100%

0%

Training Set

Testing Set

Modern deep networks 
can perfectly fit to 

random data
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Function Approximators

Neural networks are excellent function approximators
…when they have training data

How do we know 
when our network 

doesn’t know?
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Adversarial Attacks on Neural Networks

Despois.  “Adversarial 
examples and their 
implications”. 2017.
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Adversarial Attacks on Neural Networks

Remember:
We train our networks with gradient descent

𝜃 ← 𝜃 − 𝜂
𝜕𝐽(𝜃, 𝑥, 𝑦)

𝜕𝜃
“How does a small change in weights increase our loss”
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Adversarial Attacks on Neural Networks

Remember:
We train our networks with gradient descent

𝜃 ← 𝜃 − 𝜂
𝜕𝐽(𝜃, 𝑥, 𝑦)

𝜕𝜃
“How does a small change in weights decrease our loss”

Fix your image 𝑥, 
and true label 𝑦
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Adversarial Attacks on Neural Networks

Adversarial Image:
Modify image to increase error

𝑥 ← 𝑥 + 𝜂
𝜕𝐽(𝜃, 𝑥, 𝑦)

𝜕𝑥
“How does a small change in the input increase our loss”

Goodfellow et al. 
2014
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“How does a small change in the input increase our loss”
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Adversarial Attacks on Neural Networks

Adversarial Image:
Modify image to increase error

𝑥 ← 𝑥 + 𝜂
𝜕𝐽(𝜃, 𝑥, 𝑦)

𝜕𝑥
“How does a small change in the input increase our loss”

Fix your weights 𝜃, 
and true label 𝑦
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Neural Network Limitations…

• Very data hungry (eg. often millions of examples)

• Computationally intensive to train and deploy (tractably requires GPUs)

• Easily fooled by adversarial examples

• Poor at representing uncertainty (how do you know what the model knows?)

• Uninterpretable black boxes, difficult to trust

• Finicky to optimize: non-convex, choice of architecture, learning parameters

• Often require expert knowledge to design, fine tune architectures
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New Frontiers 1:
Bayesian Deep Learning
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Why Care About Uncertainty?

	

	

	

OR

ℙ(cat)

ℙ(dog)
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Why Care About Uncertainty?

	

	

	 ℙ cat =	0.2

ℙ dog = 0.8

Remember :
ℙ cat + ℙ dog = 1
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Bayesian Deep Learning for Uncertainty

Network tries to learn output, 𝒀, directly from raw data, 𝑿

Find mapping, 𝑓, parameterized by weights 𝜽 such that 
min ℒ(𝒀, 𝑓 𝑋; 𝜽 )

Bayesian neural networks aim to learn a posterior over weights, 
ℙ 𝜽 𝑿, 𝒀 :

ℙ 𝜽 𝑿,𝒀 =
ℙ 𝒀 𝑿, 𝜽 ℙ(𝜽)

ℙ(𝒀|𝑿)
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Bayesian Deep Learning for Uncertainty

Network tries to learn output, 𝒀, directly from raw data, 𝑿

Find mapping, 𝑓, parameterized by weights 𝜽 such that 
min ℒ(𝒀, 𝑓 𝑋; 𝜽 )

Bayesian neural networks aim to learn a posterior over weights, 
ℙ 𝜽 𝑿, 𝒀 :

ℙ 𝜽 𝑿,𝒀 =
ℙ 𝒀 𝑿, 𝜽 ℙ(𝜽)

ℙ(𝒀|𝑿)

Approximate the posterior ℙ 𝜽 𝑿, 𝒀 by sampling

Intractable!
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Elementwise Dropout for Uncertainty

Evaluate 𝑇	stochastic forward passes through the network 𝜽G GHI
J

Dropout as a form of stochastic sampling   𝑧L,G	~	𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝑝 			∀	𝑤 ∈ 𝜽

⊙ =

Unregularized Kernel
𝜽

Bernoulli Dropout
𝑧𝜽,G

Stochastic Sampled
𝜽G

𝔼 𝒀\ 𝑿 =
1
𝑇
]𝑓 𝑿 𝜽G

J

GHI

𝑉𝑎𝑟 𝒀\ 𝑿 =
1
𝑇
]𝑓(𝑿)` − 𝔼 𝒀\ 𝑿 `
J

GHI

Amini et al., NIPS Workshop on Bayesian Deep Learning, 2017.
Gal and Ghahramani, ICML, 2016.
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Kendall, Gal, NIPS 2017.

Input image Predicted Depth Model Uncertainty

Model Uncertainty Application



New Frontiers II:
Learning to Learn 
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Motivation

Standard deep neural networks are optimized for a single task

Often require expert knowledge to build an architecture for a given task

Complexity of models increases Greater the need for specialized 
engineers
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Possible Solution

AutoML: Learning to Learn

Build a learning algorithm that learns which model to use to 
solve a given problem
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AutoML: Learning to Learn

Zoph and Le, ICLR 2017.
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Model Controller

At each step, the model samples a brand new network
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The Child Network

Sampled network 
from RNNTraining Data Predicted Labels

Compute final accuracy on this dataset
Update RNN controller based on the accuracy of the child network after training

Zoph and Le, ICLR 2017.
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Learning to Learn:  A level deeper

Zoph and Le, ICLR 2017.
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This Spawns a Very Powerful Idea

• Design an AI algorithm that can build new models capable of solving a 
task

• Reduces the need for experienced engineers to design the networks
• Makes deep learning more accessible to the public

The connection to Artificial 
General Intelligence: 

the ability to intelligently 
reason about how we learn



Questions?


