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How are machine learning models represented?

Model is a Data Structure
e.g. A Graph

aka 

“Symbolic” | “Deferred Execution” | 
“Define-and-run”

Model is a Program
e.g. Python Code

aka

“Imperative” | “Eager Execution” | 
“Define-by-run”



import tensorflow as tf

x = tf.constant(10.0)
w = tf.constant(4.0)
b = tf.constant(2.0)

y = tf.multiply(x, w)
print(y)
# You get: Tensor("Mul:0",shape=(), dtype=float32)

z = tf.add(y, b)
print(z)
# You get: Tensor("Add:0",shape=(), dtype=float32)

By default, TensorFlow is a symbolic engine.

# You need to create a “session” to perform the
# actual computation.
sess = tf.Session()
print(sess.run(z))
# You get: 42.0.
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Output and/or model updates

Model as a Data Structure

TensorFlow: Symbolic Mode



Pros:
+ makes (de)serialization easier

+ deployment on devices

(e.g., mobile, TPU, XLA)
Model as a Data Structure

TF Session TF Session

XLA: 
Optimized binary for 
CPUs and accelerators

Symbolic Execution in TensorFlow

https://www.tensorflow.org/mobile/tflite/
https://cloud.google.com/tpu/
https://www.tensorflow.org/performance/xla/
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Pros:
+ makes (de)serialization easier

+ deployment on devices
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Symbolic Execution in TensorFlow
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Model as a Data Structure

Worker 1 Worker 2 Worker 3 Worker n

...

...

Parameter 
Server

Shared states:
model weights and 

updates

Pros:
+ makes (de)serialization easier

+ deployment on devices

(e.g., mobile, TPU, XLA)

+ interoperability between languages

+ distributed training

Symbolic Execution in TensorFlow

https://www.tensorflow.org/mobile/tflite/
https://cloud.google.com/tpu/
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/deploy/distributed
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Pros:
+ makes (de)serialization easier

+ deployment on devices

(e.g., mobile, TPU, XLA)

+ interoperability between languages

+ distributed training

+ speed and concurrency not limited by language

(e.g., Python global interpreter lock)

Symbolic Execution in TensorFlow

Cons:
- less intuitive

- harder to debug (*but see later slides)

- harder to write control flow structures

- harder to write dynamic models

https://www.tensorflow.org/mobile/tflite/
https://cloud.google.com/tpu/
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/deploy/distributed


Eager Execution in TensorFlow

Model is a Program
e.g. Python Code

aka 
“Imperative” | “Eager Execution”

+ easier to learn (“Pythonic”)

+ easier to debug

+ makes dynamic (data-dependent)

neural structures easier to write



import tensorflow as tf

import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()

x = tf.constant(10.0)
w = tf.constant(4.0)
b = tf.constant(2.0)

y = tf.multiply(x, w)
print(y)
# You get: tf.Tensor(40.0,shape=(), dtype=float32)

z = tf.add(y, b)
print(z)
# You get: tf.Tensor(42.0,shape=(), dtype=float32)

But since version1.5, you can switch to 
the imperative (eager) mode.

import tensorflow as tf

x = tf.constant(10.0)
w = tf.constant(4.0)
b = tf.constant(2.0)

y = tf.multiply(x, w)
print(y)
# You get: Tensor("Mul:0",shape=(), dtype=float32)

z = tf.add(y, b)
print(z)
# You get: Tensor("Add:0",shape=(), dtype=float32)

See eager-mode examples and notebooks.

Eager Execution in TensorFlow
By default, TensorFlow is a symbolic engine.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/notebooks


Symbolic vs. Eager Mode

Model is a Program
e.g. Python Code

aka 
“Imperative” | “Eager Execution”

+ easier to learn (“Pythonic”)

+ easier to debug

+ makes dynamic (data-dependent)

neural structures easier to write



dense1 = tf.layers.Dense(state_size, activation='tanh')
dense2 = tf.layers.Dense(state_size)

for i in xrange(max_sequence_len):
  input_slice = input_array.read(i)
  combined = tf.concat([input_slice, state], axis=1)
  state_updated = dense1(combined)
  state = tf.where(i >= sequence_lengths, state, state_updated)
  output_updated = dense2(state)
  output = tf.where(
      i >= sequence_lengths, output, output_updated)

final_state, final_output = state, output

dense1 = tf.layers.Dense(state_size, activation='tanh')
dense2 = tf.layers.Dense(state_size)

def loop_cond(i, state, output):
  return i < max_sequence_len

def loop_body(i, state, output):
  input_slice = input_array.read(i)
  combined = tf.concat([input_slice, state], axis=1)
  state_updated = dense1(combined)
  state = tf.where(i >= sequence_lengths, state, state_updated)
  output_updated = dense2(state)
  output = tf.where(
      i >= sequence_lengths, output, output_updated)
  return i + 1, state, output

_, final_state, final_output = tf.while_loop(
    loop_cond, loop_body,
    [i, initial_state, dummy_initial_output])

sess.run([final_state, final_output])

Symbolic Eager

http://colah.github.io/posts/2015-08-
Understanding-LSTMs/Writing a basic RNN: 

TensorFlow: Control Flow in Symbolic vs. Eager

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Static models

＋ Model structure is fixed regardless of input data.

＋ The majority of DL models for image, audio and numerical data.

Source: Inception model in TensorFlow

Model Structures: Static vs. Dynamic

https://github.com/tensorflow/models/tree/master/research/inception


＋ Models whose structure cannot be easily described as a graph, i.e., changes a lot with input data.

＋ Used by some state-of-the-art models that deal with hierarchical structures in natural language.

＋ Difficult to write in the symbolic way (using tf.cond and tf.while_loop)

＋ Straightforward with Eager: using the native Python control flow. See the SPINN example.
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Traditional RNN

Model Structures: Static vs. Dynamic

Dynamic Models, e.g., Tree RNN

https://github.com/tensorflow/tensorflow/tree/master/third_party/examples/eager/spinn


import tensorflow as tf
from tensorflow.python import debug as tfdbg

a = tf.constant(10.0)
b = tf.Variable(4.0)
c = tf.Variable(2.0)

x = tf.multiply(a, b)
y = tf.add(c, x)

sess = tf.Session()
sess = tfdbg.LocalCLIDebugWrapperSession(sess)
sess.run(tf.global_variables_initializer())
sess.run(y)

TensorFlow Debugger (tfdbg):
Command Line Interface

tf.Session

tfdbg

What if you want to debug symbolic execution?



import tensorflow as tf
from tensorflow.python import debug as tfdbg

a = tf.constant(10.0)
b = tf.Variable(4.0)
c = tf.Variable(2.0)

x = tf.multiply(a, b)
y = tf.add(c, x)

sess = tf.Session()
sess = tfdbg.LocalCLIDebugWrapperSession(sess)
sess.run(tf.global_variables_initializer())
sess.run(y)

● Presents after each Session.run:

○ All tensor values in the computation graph

○ Graph structure

… in an interactive, mouse-clickable CLI.

What if you want to debug symbolic execution?



tfdbg> run -f has_inf_or_nan

See walkthrough at 
https://www.tensorflow.org/programmers_guide/debugger

Common causes of NaNs and infinities 
in DL models:

○ underflow followed by:

■ division by zero

■ logarithm of zero

○ overflow caused by:

■ learning rate too high

■ bad training examples

TensorFlow: Debugging Numerical Instability
(NaNs and Infinities)

https://www.tensorflow.org/programmers_guide/debugger


import tensorflow as tf
from tensorflow.python import debug as tf_debug

a = tf.random_normal([10, 1])
b = tf.random_normal([10, 10])
c = tf.random_normal([10, 1])

x = tf.matmul(b, a)
y = tf.add(c, x)

sess = tf.Session()
sess = tf_debug.TensorBoardDebugWrapperSession(
   sess, 'localhost:7007')
for _ in xrange(100):
  sess.run(y)

# Do the following in a terminal.

# Install nightly builds.
pip install --upgrade --force-reinstall \
    tf-nightly tb-nightly grpcio

# Start tensorboard with debugger enabled.
tensorboard \
    --logdir /tmp/logdir \
    --port 6006 \
    --debugger_port 7007

# Open a browser and navigate to:
#   http://localhost:6006/#debugger

# Then save the code in a file and run it. -->

New Tool: Graphical Debugger for TensorFlow
(TensorBoard Debugger Plugin)

● Not publicly announced yet (coming in TensorFlow 1.6)

● But available for preview in nightly builds of tensorflow 

and tensorboard

Try it yourself!

http://localhost:6006/#debugger


A tree view of all 
graph nodes.

Checkbox = watch.

Tying graph nodes 
back to the Python 
lines that created 
them.

View the runtime 
graph structure.

View summaries of 
watched tensor 
values.

Step node by node 
(tensor by tensor).

Continue over 
Session.runs or to a 
certain tensor-value 
condition.

Detailed view of 
watched tensor 
values.

Right-click nodes and 
select “expand and 
highlight” to go to the 
corresponding line in the 
source code.

New Tool: Visual Debugger for TensorFlow



● ML/DL models can be represented in two ways:

○ as a data structure → Symbolic Execution:

good for deployment, distribution, and optimization

○ as a program → Eager Execution:

good for prototyping, debugging and dynamic models; easier to learn

● TensorFlow supports both modes

● TensorFlow Debugger (tfdbg) provides visibility into 

symbolically-executing models and help you debug/understand them in:

○ command line

○ browser

Summary
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For TensorFlow issues, go to https://github.com/tensorflow/tensorflow/issues

For TensorBoard issues, go to https://github.com/tensorflow/tensorboard/issues
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