Faster ML Development with **TensorFlow**

Shanqing Cai (cais@google.com) Senior Software Engineer, Google Brain (Cambridge, MA)

Guest Lecture @ MIT 6.S191 February, 2018

How are machine learning models represented?

Model is a Data Structure e.g. A Graph

aka

"Symbolic" | "Deferred Execution" | "Define-and-run"

Model is a **Program** e.g. Python Code

aka

"Imperative" | "Eager Execution" | "Define-by-run"

By default, TensorFlow is a symbolic engine.

```
import tensorflow as tf
x = tf.constant(10.0)
w = tf.constant(4.0)
b = tf.constant(2.0)
y = tf.multiply(x, w)
print(y)
# You get: Tensor("Mul:0", shape=(), dtype=float32)
z = tf.add(y, b)
print(z)
# You get: Tensor("Add:0", shape=(), dtype=float32)
# You need to create a "session" to perform the
# actual computation.
sess = tf.Session()
print(sess.run(z))
# You get: 42.0.
```

TensorFlow: Symbolic Mode

Pros:

- + makes (de)serialization easier
 - + deployment on devices
 - (e.g., <u>mobile</u>, <u>TPU</u>, <u>XLA</u>)

Pros:

- + makes (de)serialization easier
 - + deployment on devices
 - (e.g., mobile, TPU, XLA)
 - + interoperability between languages

Pros:

- + makes (de)serialization easier
 - + deployment on devices
 - (e.g., mobile, TPU, XLA)
 - + interoperability between languages
 - + distributed training

Pros:

- + makes (de)serialization easier
 - + deployment on devices
 - (e.g., mobile, TPU, XLA)
 - + interoperability between languages
 - + distributed training
- + speed and concurrency not limited by language (e.g., Python global interpreter lock)

Model is a Data Structure e.g. A Graph

aka "Symbolic" | "Deferred Execution"

Pros:

- + makes (de)serialization easier
 - + deployment on devices
 - (e.g., mobile, TPU, XLA)
 - + interoperability between languages
 - + distributed training
- + speed and concurrency not limited by language (e.g., Python global interpreter lock)

Model is a Data Structure e.g. A Graph

aka "Symbolic" | "Deferred Execution"

Pros:

- + makes (de)serialization easier
 - + deployment on devices
 - (e.g., mobile, TPU, XLA)
 - + interoperability between languages
 - + distributed training
- + speed and concurrency not limited by language (e.g., Python global interpreter lock)

Cons:

- less intuitive
- harder to debug (*but see later slides)
- harder to write control flow structures
- harder to write dynamic models

Eager Execution in TensorFlow

- + easier to learn ("Pythonic")
- + easier to debug
- + makes dynamic (data-dependent) neural structures easier to write

Model is a Program e.g. Python Code

aka "Imperative" | "Eager Execution"

Eager Execution in TensorFlow

By default, TensorFlow is a symbolic engine.

```
import tensorflow as tf
x = tf.constant(10.0)
w = tf.constant(4.0)
b = tf.constant(2.0)
y = tf.multiply(x, w)
print(y)
# You get: Tensor("Mul:0", shape=(), dtype=float32)
z = tf.add(y, b)
print(z)
# You get: Tensor("Add:0", shape=(), dtype=float32)
```

But since version1.5, you can switch to the imperative (eager) mode.

```
import tensorflow as tf
import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()
x = tf.constant(10.0)
w = tf.constant(4.0)
b = tf.constant(2.0)
y = tf.multiply(x, w)
print(y)
# You get: tf.Tensor(<u>40.0</u>, shape=(), dtype=float32)
z = tf.add(y, b)
print(z)
# You get: tf.Tensor(<u>42.0</u>, shape=(), dtype=float32)
```

See eager-mode examples and notebooks.

Symbolic vs. Eager Mode

- + easier to learn ("Pythonic")
- + easier to debug
- + makes dynamic (data-dependent) neural structures easier to write

Model is a Program e.g. Python Code

aka "Imperative" | "Eager Execution"

TensorFlow: Control Flow in Symbolic vs. Eager

(Xt)

Writing a basic RNN:

Symbolic

```
dense1 = tf.layers.Dense(state_size, activation='tanh')
dense2 = tf.layers.Dense(state_size)
def loop_cond(i, state, output):
 return i < max_sequence_len</pre>
def loop_body(i, state, output):
 input_slice = input_array.read(i)
 combined = tf.concat([input_slice, state], axis=1)
 state_updated = dense1(combined)
 state = tf.where(i >= sequence_lengths, state, state_updated)
 output_updated = dense2(state)
 output = tf.where(
      i >= sequence_lengths, output, output_updated)
 return i + 1, state, output
  final_state, final_output = tf.while_loop(
    loop_cond, loop_body,
    [i, initial_state, dummy_initial_output])
sess.run([final_state, final_output])
```

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Eager

```
dense1 = tf.layers.Dense(state_size, activation='tanh')
dense2 = tf.layers.Dense(state_size)
```

```
for i in xrange(max_sequence_len):
    input_slice = input_array.read(i)
    combined = tf.concat([input_slice, state], axis=1)
    state_updated = dense1(combined)
    state = tf.where(i >= sequence_lengths, state, state_updated)
    output_updated = dense2(state)
    output = tf.where(
        i >= sequence_lengths, output, output_updated)
```

final_state, final_output = state, output

Model Structures: Static vs. Dynamic

+ Model structure is fixed regardless of input data. + The majority of DL models for image, audio and numerical data.

Static models

Source: Inception model in TensorFlow

Model Structures: Static vs. Dynamic

Traditional RNN

- Difficult to write in the symbolic way (using tf.cond and tf.while_loop) -----
- + Straightforward with Eager: using the native Python control flow. See the SPINN example.

Dynamic Models, e.g., Tree RNN

+ Models whose structure cannot be easily described as a graph, i.e., changes a lot with input data.

+ Used by some state-of-the-art models that deal with hierarchical structures in natural language.

What if you want to debug symbolic execution?

TensorFlow Debugger (tfdbg): Command Line Interface

```
import tensorflow as tf
from tensorflow.python import debug as tfdbg
a = tf.constant(10.0)
b = tf.Variable(4.0)
c = tf.Variable(2.0)
x = tf.multiply(a, b)
y = tf.add(c, x)
```

```
sess = tf.Session()
sess = tfdbg.LocalCLIDebugWrapperSession(sess)
sess.run(tf.global_variables_initializer())
sess.run(y)
```


What if you want to debug symbolic execution?

```
import tensorflow as tf
from tensorflow.python import debug as tfdbg
a = tf.constant(10.0)
b = tf.Variable(4.0)
c = tf.Variable(2.0)
x = tf.multiply(a, b)
y = tf.add(c, x)
sess = tf.Session()
sess = tfdbg.LocalCLIDebugWrapperSession(sess)
sess.run(tf.global_variables_initializer())___
sess.run(y) -
```

- Presents after each Session.run:
 - All tensor values in the computation graph
 - Graph structure
- ... in an interactive, mouse-clickable CLI.

: (ms)	Size (B)	<u>) Op type</u>	Tensor name		
0.000]	174	VariableV	2 <u>Variable:0</u>		
0.008]	178	VariableV	2 <u>Variable_1:0</u>		
5.207]	208	Const	Variable 1/initial value:0		
10.375]	194	Assign	Variable/Assign:0		
10.427]	198	Assign	Variable_1/Assign:0		
Scro :fdbg>	end: run f	: 0.00% #2: 1 fetch	(Mul:0); 0 feeds		Mouse:
Scro fdbg> run- < list_t dumped	end: run a > lt ensors r tensor(s)	: 0.00% #2: 1 fetch hode_info):	(Mul:0); 0 feeds print_tensor list_inputs	list_outputs	Mouse: <u>run_in</u>
Scro fdbg> run- < list_t dumped	end: run a end: run a > lt ensors r tensor(s) <u>Size (B)</u>	<pre>#2: 1 fetch mode_info): <u>Op type</u></pre>	(Mul:0); 0 feeds print_tensor list_inputs <u>Tensor_name</u>	list_outputs	Mouse: <u>run_in</u>
Scro fdbg> run- < list_t dumped (ms) 0.000]	end: run f end: run f ensors r tensor(s) <u>Size (B)</u> 174	<pre>#2: 1 fetch #2: 1 fetch node_info): <u>0p type</u> Const </pre>	(Mul:0); 0 feeds print_tensor list_inputs <u>Tensor_name</u> <u>Const:0</u> Vasiable 110	list_outputs	Mouse: <u>run_in</u>
Scro fdbg> run- list_t / dumped (ms) 0.000] 0.012]	<pre>end: run # end: run # ensors r tensor(s) Size (B) 174 184 180</pre>	<pre>#2: 1 fetch mode_info): <u>Op type</u> Const VariableV2 VariableV2</pre>	(Mul:0); 0 feeds print_tensor list_inputs <u>Tensor name</u> <u>Const:0</u> <u>Variable_1:0</u> Variable:0	list_outputs	Mouse:
Scro fdbg> run- list_t dumped (ms) 0.000] 0.012] 0.527] 0.605]	<pre>end: run # end: run # ensors it ensor(s) <u>Size (B) 174 184 180 194</u></pre>	<pre>#2: 1 fetch #2: 1 fetch node_info): <u>0p type</u> Const VariableV2 VariableV2 Identity</pre>	(Mul:0); 0 feeds print_tensor list_inputs <u>Tensor_name</u> <u>Const:0</u> <u>Variable_1:0</u> <u>Variable:0</u> Variable 1/read:0	list_outputs	Mouse:
Scro fdbg> list_t / dumped (ms) 0.000] 0.012] 0.527] 0.605] 0.778]	<pre>end: run # end: run # > lt ensors r tensor(s) <u>Size (B)</u> 174 184 180 194 190</pre>	<pre>#2: 1 fetch #2: 1 fetch mode_info): <u>Op type</u> Const VariableV2 VariableV2 Identity Identity</pre>	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable:0 Variable_1/read:0 Variable/read:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped (ms) 0.000] 0.012] 0.527] 0.605] 0.778] 1.089]	<pre>end: run # end: run # > lt ensors r tensor(s) Size (B) 174 184 180 194 190 170</pre>	<pre>#2: 1 fetch #2: 1 fetch node_info): <u>Op type</u> Const VariableV2 VariableV2 Identity Identity Add</pre>	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_0 Variable_1/read:0 Variable/read:0 Add:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped . (ms) 0.000] 0.012] 0.012] 0.527] 0.605] 0.778] 1.089] 1.301]	<pre>end: run # end: run # > lt ensors r tensor(s) Size (B) 174 184 180 194 190 170 170</pre>	<pre>#2: 1 fetch #2: 1 fetch node_info): <u>Op type</u> Const VariableV2 VariableV2 Identity Identity Add Mul</pre>	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_1/read:0 Variable/read:0 Add:0 Mul:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped (ms) 0.000] 0.012] 0.527] 0.605] 0.778] 1.089] 1.301]	<pre>end: run # > lt ensors r tensor(s) <u>Size (B)</u> 174 184 180 194 190 170 170</pre>	2: 1 fetch ande_info bode_info const VariableV2 VariableV2 Identity Identity Add Mul	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_0 Variable_1/read:0 Variable/read:0 Add:0 Mul:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped (ms) 0.000] 0.012] 0.012] 0.012] 0.527] 0.605] 0.778] 1.089] 1.301]	<pre>end: run # end: run # ensors f tensor(s) <u>Size (B)</u> 174 184 180 194 190 170 170</pre>	2: 1 fetch mode_info Op type Const VariableV2 VariableV2 Identity Identity Add Mul	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_1:0 Variable_1/read:0 Variable/read:0 Add:0 Mul:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped (ms) 0.000 0.012 0.527 0.605 0.778 1.089 1.301	<pre>end: run # end: run # > lt ensors r tensor(s) <u>Size (B)</u> 174 184 180 194 190 170 170</pre>	2: 1 fetch ande_info bis <u>Op type</u> Const VariableV2 VariableV2 Identity Identity Add Mul	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_0 Variable_1/read:0 Variable/read:0 Add:0 Mul:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped (ms) 0.000] 0.012] 0.000] 0.012] 0.0527] 0.605] 0.778] 1.089] 1.301]	<pre>end: run # > lt ensors r tensor(s) <u>Size (B)</u> 174 184 180 194 190 170 170</pre>	2: 1 fetch mode_info 0p type Const VariableV2 VariableV2 Identity Identity Add Mul	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_1:0 Variable_1/read:0 Variable/read:0 Add:0 Mul:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped (ms) 0.000 0.012 0.527 0.605 0.778 1.089 1.301	<pre>end: run # end: run # > lt ensors r tensor(s) <u>Size (B)</u> 174 184 180 194 190 170 170 170</pre>	2: 1 fetch ande_info bis <u>Op type</u> Const VariableV2 VariableV2 Identity Identity Add Mul	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_0 Variable_1/read:0 Variable/read:0 Add:0 Mul:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t / dumped (ms) 0.000] 0.012] 0.605] 0.605] 0.778] 1.089] 1.301]	<pre>end: run # end: run # ensors ft ensor(s) <u>Size (B)</u> 174 184 180 194 190 170 170</pre>	2: 1 fetch mode_info Op type Const VariableV2 VariableV2 Identity Identity Add Mul	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_1:0 Variable_1/read:0 Variable/read:0 Add:0 Mul:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped 	<pre>end: run # end: run # ensors 1t ensor(s) Size (B) 174 184 180 194 190 170 170 170</pre>	2: 1 fetch ande_info 2: 0p type Const VariableV2 VariableV2 Identity Identity Add Mul	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_0 Variable_1/read:0 Variable/read:0 Add:0 Mul:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped (ms) 0.000] 0.012] 0.605] 0.778] 1.089] 1.301]	<pre>end: run # > lt ensors r tensor(s) <u>Size (B)</u> 174 184 180 194 190 170 170</pre>	2: 1 fetch mode_info 0p type Const VariableV2 VariableV2 Identity Identity Add Mul	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_1:0 Variable_1/read:0 Variable/read:0 Add:0 Mul:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped (ms) 0.000 0.012 0.527 0.605 0.778 1.089 1.301 1.301	<pre>end: run # > lt ensors r tensor(s) Size (B) 174 184 180 194 190 170 170</pre>	2: 1 fetch ande_info ande_info const VariableV2 VariableV2 VariableV2 Identity Identity Add Mul	<pre>(Mul:0); 0 feeds print_tensor list_inputs Tensor name Const:0 Variable_1:0 Variable_0 Variable_1/read:0 Variable/read:0 Add:0 Mul:0</pre>	list_outputs	Mouse:
Scro fdbg> run- list_t dumped (ms) 0.000 0.012 0.605 0.778 1.089 1.301 1.301	<pre>end: run # end: run # ensors ft ensor(s) <u>Size (B)</u> 174 184 180 194 190 170 170 170</pre>	2: 1 fetch node_info <u>Op type</u> Const VariableV2 VariableV2 Identity Identity Add Mul	<pre>(Mul:0); 0 feeds</pre>	list_outputs	Mouse:

TensorFlow: Debugging Numerical Instability (NaNs and Infinities)

run-	end: run	#4: 1 fetcl	h (train/Adam); 2 feeds
<	> lt -	f has_inf_o	r_nan
list_t	ensors	node_info	<pre>print_tensor list_inputs list_output</pre>
36 dumper	d tensor	(s) passing	filter "has_inf_or_nan":
t (ms)	Size	Op type	Tensor name
[14.385]	3.97k	Log	cross entropy/Log:0
[14.490]	3.97k	Mul	cross entropy/mul:0
[14.862]	4.00k	Mul	train/gradients/cross entropy/mul grad/mu
[14.935]	4.00k	Sum	train/gradients/cross entropy/mul grad/Su
[14.995]	4.00k	Reshape	train/gradients/cross entropy/mul grad/Re
115 0371	1 000	Paciecocal	train laradients larges entrony /log and /Pa

tfdbg> run -f has_inf_or_nan

See walkthrough at https://www.tensorflow.org/programmers_guide/debugger

Common causes of NaNs and infinities in DL models:

• **underflow** followed by:

- division by zero
- logarithm of zero
- overflow caused by:
 - learning rate too high
 - bad training examples

New Tool: Graphical Debugger for TensorFlow (TensorBoard Debugger Plugin)

```
# Do the following in a terminal.
# Install nightly builds.
pip install --upgrade --force-reinstall \
    tf-nightly tb-nightly grpcio
# Start tensorboard with debugger enabled.
tensorboard \
    --logdir /tmp/logdir \
    --port 6006 \
    --debugger_port 7007
# Open a browser and navigate to:
    http://localhost:6006/#debugger
# Then save the code in a file and run it. -->
```

- Not publicly announced yet (coming in TensorFlow 1.6)
- But available for preview in nightly builds of tensorflow and tensorboard

```
import tensorflow as tf
from tensorflow.python import debug as tf_debug
a = tf.random_normal([10, 1])
b = tf.random_normal([10, 10])
c = tf.random_normal([10, 1])
x = tf.matmul(b, a)
y = tf.add(c, x)
sess = tf.Session()
<u>sess = tf_debug.TensorBoardDebugWrapperSession(</u>
   sess, 'localhost:7007')
for _ in xrange(100):
  sess.run(y)
```

Try it yourself!

New Tool: Visual Debugger for TensorFlow

TensorBoard DEBUGGER	
Node List Filter Regex Filter Mode	/job:localhost/replica:0/task:0
Jjob:localhost/replica:0/task:0/device:CPU:0	
 ✓ [Add] Add ✓ [Const] Const ✓ [Mul] Mul A tree view of all graph nodes.	Right-c select ' highlig corresp
✓ ✓ Variable Checkbox = watch.	source
Source Code tdp_demo.py	View th graph s
$\begin{array}{c} 1/1 & \textbf{v} \\ 1/1 & \textbf{v} \\ 2/4 & \textbf{v} \\ 2/4 & \textbf{v} \\ 2/4 & \textbf{v} \\ 2/4 & \textbf{v} \\ 1/1 & \textbf{v} $	
<pre>13 sess, 'localhost:7007') 14 0/1 ▼ sess.run(tf.global_variables_initializer()) 15 sess.run(y)</pre>	Tensor Value Overview Tensor
- Session Runs	Variable:0
Feeds Fetches Targets #(Devices) Count init 1 1	Variable/read:0
STEP CONTINUE Continue over CONTINUE Continue over Session.runs or to a certain tensor-value	<u>Const:0</u> <u>Variable_1:0</u>
Step node by node (tensor by tensor).	

Summary

- ML/DL models can be represented in two ways:
 - as a data structure → Symbolic Execution: good for deployment, distribution, and optimization
 - \circ as a program \rightarrow Eager Execution: good for prototyping, debugging and dynamic models; easier to learn
- TensorFlow supports both modes
- TensorFlow Debugger (tfdbg) provides visibility into symbolically-executing models and help you debug/understand them in:
 - command line
 - browser

Open-source contributors to TensorFlow.

Thank you!

For questions, email <u>cais@google.com</u>

For TensorFlow issues, go to <u>https://github.com/tensorflow/tensorflow/issues</u>

For TensorBoard issues, go to https://github.com/tensorflow/tensorboard/issues

Acknowledgements

- Google Brain Team in Mountain View, CA and Cambridge, MA.
- Chi Zeng and Mahima Pushkarna: Collaborators on the visual tfdbg project.

