
Faster ML Development
with TensorFlow

Shanqing Cai (cais@google.com)
Senior Software Engineer, Google Brain (Cambridge, MA)

Guest Lecture @ MIT 6.S191
February, 2018

mailto:cais@google.com
http://introtodeeplearning.com/

How are machine learning models represented?

Model is a Data Structure
e.g. A Graph

aka

“Symbolic” | “Deferred Execution” |
“Define-and-run”

Model is a Program
e.g. Python Code

aka

“Imperative” | “Eager Execution” |
“Define-by-run”

import tensorflow as tf

x = tf.constant(10.0)
w = tf.constant(4.0)
b = tf.constant(2.0)

y = tf.multiply(x, w)
print(y)
You get: Tensor("Mul:0",shape=(), dtype=float32)

z = tf.add(y, b)
print(z)
You get: Tensor("Add:0",shape=(), dtype=float32)

By default, TensorFlow is a symbolic engine.

You need to create a “session” to perform the
actual computation.
sess = tf.Session()
print(sess.run(z))
You get: 42.0.

wx

multiply

add

b

tf.Session

Output and/or model updates

Model as a Data Structure

TensorFlow: Symbolic Mode

Pros:
+ makes (de)serialization easier

+ deployment on devices

(e.g., mobile, TPU, XLA)
Model as a Data Structure

TF Session TF Session

XLA:
Optimized binary for
CPUs and accelerators

Symbolic Execution in TensorFlow

https://www.tensorflow.org/mobile/tflite/
https://cloud.google.com/tpu/
https://www.tensorflow.org/performance/xla/

Java

...

Pros:
+ makes (de)serialization easier

+ deployment on devices

(e.g., mobile, TPU, XLA)

+ interoperability between languages Model as a Data Structure

Symbolic Execution in TensorFlow

https://www.tensorflow.org/mobile/tflite/
https://cloud.google.com/tpu/
https://www.tensorflow.org/performance/xla/

Model as a Data Structure

Worker 1 Worker 2 Worker 3 Worker n

...

...

Parameter
Server

Shared states:
model weights and

updates

Pros:
+ makes (de)serialization easier

+ deployment on devices

(e.g., mobile, TPU, XLA)

+ interoperability between languages

+ distributed training

Symbolic Execution in TensorFlow

https://www.tensorflow.org/mobile/tflite/
https://cloud.google.com/tpu/
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/deploy/distributed

Pros:
+ makes (de)serialization easier

+ deployment on devices

(e.g., mobile, TPU, XLA)

+ interoperability between languages

+ distributed training

+ speed and concurrency not limited by language

(e.g., Python global interpreter lock)

Symbolic Execution in TensorFlow

Model is a Data Structure
e.g. A Graph

aka
“Symbolic” | “Deferred Execution”

https://www.tensorflow.org/mobile/tflite/
https://cloud.google.com/tpu/
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/deploy/distributed

Pros:
+ makes (de)serialization easier

+ deployment on devices

(e.g., mobile, TPU, XLA)

+ interoperability between languages

+ distributed training

+ speed and concurrency not limited by language

(e.g., Python global interpreter lock)

Symbolic Execution in TensorFlow

Model is a Data Structure
e.g. A Graph

aka
“Symbolic” | “Deferred Execution”

https://www.tensorflow.org/mobile/tflite/
https://cloud.google.com/tpu/
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/deploy/distributed

Pros:
+ makes (de)serialization easier

+ deployment on devices

(e.g., mobile, TPU, XLA)

+ interoperability between languages

+ distributed training

+ speed and concurrency not limited by language

(e.g., Python global interpreter lock)

Symbolic Execution in TensorFlow

Cons:
- less intuitive

- harder to debug (*but see later slides)

- harder to write control flow structures

- harder to write dynamic models

https://www.tensorflow.org/mobile/tflite/
https://cloud.google.com/tpu/
https://www.tensorflow.org/performance/xla/
https://www.tensorflow.org/deploy/distributed

Eager Execution in TensorFlow

Model is a Program
e.g. Python Code

aka
“Imperative” | “Eager Execution”

+ easier to learn (“Pythonic”)

+ easier to debug

+ makes dynamic (data-dependent)

neural structures easier to write

import tensorflow as tf

import tensorflow.contrib.eager as tfe
tfe.enable_eager_execution()

x = tf.constant(10.0)
w = tf.constant(4.0)
b = tf.constant(2.0)

y = tf.multiply(x, w)
print(y)
You get: tf.Tensor(40.0,shape=(), dtype=float32)

z = tf.add(y, b)
print(z)
You get: tf.Tensor(42.0,shape=(), dtype=float32)

But since version1.5, you can switch to
the imperative (eager) mode.

import tensorflow as tf

x = tf.constant(10.0)
w = tf.constant(4.0)
b = tf.constant(2.0)

y = tf.multiply(x, w)
print(y)
You get: Tensor("Mul:0",shape=(), dtype=float32)

z = tf.add(y, b)
print(z)
You get: Tensor("Add:0",shape=(), dtype=float32)

See eager-mode examples and notebooks.

Eager Execution in TensorFlow
By default, TensorFlow is a symbolic engine.

https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples
https://github.com/tensorflow/tensorflow/tree/master/tensorflow/contrib/eager/python/examples/notebooks

Symbolic vs. Eager Mode

Model is a Program
e.g. Python Code

aka
“Imperative” | “Eager Execution”

+ easier to learn (“Pythonic”)

+ easier to debug

+ makes dynamic (data-dependent)

neural structures easier to write

dense1 = tf.layers.Dense(state_size, activation='tanh')
dense2 = tf.layers.Dense(state_size)

for i in xrange(max_sequence_len):
 input_slice = input_array.read(i)
 combined = tf.concat([input_slice, state], axis=1)
 state_updated = dense1(combined)
 state = tf.where(i >= sequence_lengths, state, state_updated)
 output_updated = dense2(state)
 output = tf.where(
 i >= sequence_lengths, output, output_updated)

final_state, final_output = state, output

dense1 = tf.layers.Dense(state_size, activation='tanh')
dense2 = tf.layers.Dense(state_size)

def loop_cond(i, state, output):
 return i < max_sequence_len

def loop_body(i, state, output):
 input_slice = input_array.read(i)
 combined = tf.concat([input_slice, state], axis=1)
 state_updated = dense1(combined)
 state = tf.where(i >= sequence_lengths, state, state_updated)
 output_updated = dense2(state)
 output = tf.where(
 i >= sequence_lengths, output, output_updated)
 return i + 1, state, output

_, final_state, final_output = tf.while_loop(
 loop_cond, loop_body,
 [i, initial_state, dummy_initial_output])

sess.run([final_state, final_output])

Symbolic Eager

http://colah.github.io/posts/2015-08-
Understanding-LSTMs/Writing a basic RNN:

TensorFlow: Control Flow in Symbolic vs. Eager

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Static models

＋ Model structure is fixed regardless of input data.

＋ The majority of DL models for image, audio and numerical data.

Source: Inception model in TensorFlow

Model Structures: Static vs. Dynamic

https://github.com/tensorflow/models/tree/master/research/inception

＋ Models whose structure cannot be easily described as a graph, i.e., changes a lot with input data.

＋ Used by some state-of-the-art models that deal with hierarchical structures in natural language.

＋ Difficult to write in the symbolic way (using tf.cond and tf.while_loop)

＋ Straightforward with Eager: using the native Python control flow. See the SPINN example.

I eat kale

I

eat kale

I

eat kale

NP VP

V NP

S

Traditional RNN

Model Structures: Static vs. Dynamic

Dynamic Models, e.g., Tree RNN

https://github.com/tensorflow/tensorflow/tree/master/third_party/examples/eager/spinn

import tensorflow as tf
from tensorflow.python import debug as tfdbg

a = tf.constant(10.0)
b = tf.Variable(4.0)
c = tf.Variable(2.0)

x = tf.multiply(a, b)
y = tf.add(c, x)

sess = tf.Session()
sess = tfdbg.LocalCLIDebugWrapperSession(sess)
sess.run(tf.global_variables_initializer())
sess.run(y)

TensorFlow Debugger (tfdbg):
Command Line Interface

tf.Session

tfdbg

What if you want to debug symbolic execution?

import tensorflow as tf
from tensorflow.python import debug as tfdbg

a = tf.constant(10.0)
b = tf.Variable(4.0)
c = tf.Variable(2.0)

x = tf.multiply(a, b)
y = tf.add(c, x)

sess = tf.Session()
sess = tfdbg.LocalCLIDebugWrapperSession(sess)
sess.run(tf.global_variables_initializer())
sess.run(y)

● Presents after each Session.run:

○ All tensor values in the computation graph

○ Graph structure

… in an interactive, mouse-clickable CLI.

What if you want to debug symbolic execution?

tfdbg> run -f has_inf_or_nan

See walkthrough at
https://www.tensorflow.org/programmers_guide/debugger

Common causes of NaNs and infinities
in DL models:

○ underflow followed by:

■ division by zero

■ logarithm of zero

○ overflow caused by:

■ learning rate too high

■ bad training examples

TensorFlow: Debugging Numerical Instability
(NaNs and Infinities)

https://www.tensorflow.org/programmers_guide/debugger

import tensorflow as tf
from tensorflow.python import debug as tf_debug

a = tf.random_normal([10, 1])
b = tf.random_normal([10, 10])
c = tf.random_normal([10, 1])

x = tf.matmul(b, a)
y = tf.add(c, x)

sess = tf.Session()
sess = tf_debug.TensorBoardDebugWrapperSession(
 sess, 'localhost:7007')
for _ in xrange(100):
 sess.run(y)

Do the following in a terminal.

Install nightly builds.
pip install --upgrade --force-reinstall \
 tf-nightly tb-nightly grpcio

Start tensorboard with debugger enabled.
tensorboard \
 --logdir /tmp/logdir \
 --port 6006 \
 --debugger_port 7007

Open a browser and navigate to:
http://localhost:6006/#debugger

Then save the code in a file and run it. -->

New Tool: Graphical Debugger for TensorFlow
(TensorBoard Debugger Plugin)

● Not publicly announced yet (coming in TensorFlow 1.6)

● But available for preview in nightly builds of tensorflow

and tensorboard

Try it yourself!

http://localhost:6006/#debugger

A tree view of all
graph nodes.

Checkbox = watch.

Tying graph nodes
back to the Python
lines that created
them.

View the runtime
graph structure.

View summaries of
watched tensor
values.

Step node by node
(tensor by tensor).

Continue over
Session.runs or to a
certain tensor-value
condition.

Detailed view of
watched tensor
values.

Right-click nodes and
select “expand and
highlight” to go to the
corresponding line in the
source code.

New Tool: Visual Debugger for TensorFlow

● ML/DL models can be represented in two ways:

○ as a data structure → Symbolic Execution:

good for deployment, distribution, and optimization

○ as a program → Eager Execution:

good for prototyping, debugging and dynamic models; easier to learn

● TensorFlow supports both modes

● TensorFlow Debugger (tfdbg) provides visibility into

symbolically-executing models and help you debug/understand them in:

○ command line

○ browser

Summary

Google Brain Team in Mountain View, CA and Cambridge, MA.

Chi Zeng and Mahima Pushkarna: Collaborators on the visual tfdbg project.

Open-source contributors to TensorFlow.

Acknowledgements

Thank you!
For questions, email cais@google.com

For TensorFlow issues, go to https://github.com/tensorflow/tensorflow/issues

For TensorBoard issues, go to https://github.com/tensorflow/tensorboard/issues

mailto:cais@google.com
https://github.com/tensorflow/tensorflow/issues
https://github.com/tensorflow/tensorboard/issues

