DEEP LEARNING -A PERSONAL PERSPECTIVE

Urs Muller

MIT 6.S191 Introduction To Deep Learning

NEURAL NETWORK MAGIC

Random network architecture

Training data Learning algorithm Excellent results

THE REAL MAGIC OF DEEP LEARNING

Let's us solve problems we don't know how to program

NEURAL NETWORKS RESEARCH AT BELL LABS, HOLMDEL 1985 - 1995

BELL LABS BUILDING IN HOLMDEL

Now called Bell Works

Around 1990:

6,000 employees in Holmdel

~300 in Research

~30 in machine learning, including:

Larry Jackel, Yann LeCun, Leon Bottou, John Denker, Vladimir Vapnik, Yoshua Bengio, Hans Peter Graf, Patrice Simard, Corinna Cortes, and many others

ORIGINAL DATABASE ~300 DIGITS

1234567830	-2 Wagne	
	\sim	
1234567899	6 Hens	
1234567890	Paul	
1234567890	5.5.4	0 1 2 3 4 5 6 7 8 9 4 24 7 2
1234567890	which	0123456789 000)
1234567890	ton	0123456789 toj
1234567890	Cia. 1	0123456789 90
1234567890	Albert-	2 4 5 6 7 8 9 las
1234567890	Ky	0 1 2 3 4 5 6 7 8 9 Jb5
1 2 3 4 5 6 7 8 9 0	steve	612 3456789 MAY (4
1214567890	900 1	01 5 (7 8 9 ANT
1234567890	Seaul	0123456107 400
12 34967890	Kwing	0123 1789 LFM
6		0/23 45 11 1 1
1 3 4 3 6 7 3 9 0	LATTY	0123456189 78
12345678910	- 1	0123456789 03
12 2 456 7090	Correy.	0123456789 4
1234567890	luan	0123456789 UK
123456 7890	Ben	
1234567890	e Alter	
1774517890	Told H.	

1734567890

Demonstrated need for large database for benchmarking

 \rightarrow USPS database

 \rightarrow MNIST database (60,000 digits)

USING PRIOR KNOWLEDGE

What class is point "X"?

If representation is north, south, east, west, then choose green

If better representation is elevation above sea level choose red

Using prior knowledge beats requiring tons of training data

Example: use convolutions for OCR

CONVOLUTIONAL NEURAL NETWORK (CNN)

LENET 1993

HOW WE CAME TO VIEW LEARNING

Largely Vladimir Vapnik's influence

Choose the right structure – "Structural Risk Minimization"

→ Bring prior knowledge to the learning machine

Capacity control – matching learning machine complexity to available data

→ Examine learning curves

LEARNING CURVES

If test error >> training error: get more training examples or decrease capacity

If test error ~ training error: increase capacity

Smart structure allows low errors with lower capacity

Number of training examples

Cortes, Jackel, Wan-Ping Chiang: Limits on Learning Machine Accuracy Imposed by Data Quality http://papers.nips.cc/paper/918-limits-on-learning-machine-accuracy-imposed-by-data-quality.pdf

PILOTNET LEARNING CURVE

12 💿 nvidia

THE (FRIENDLY) RECOGNIZER WAR

Who can read the digits best?

Comparison of Classifier Methods: A Case Study in Handwritten Digit Recognition

Léon Bottou*, Corinna Cortes, John S. Denker, Harris Drucker, Isabelle Guyon, L. D. Jackel, Yann LeCun, Urs A. Müller[†], Eduard Säckinger, Patrice Simard, and Vladimir Vapnik

> AT&T Bell Laboratories, Holmdel, NJ 07733 *Neuristique, 24 rue des Petites Ecuries, 75010 Paris, France †Electronics Laboratory, Swiss Federal Institute of Technology, ETH Zentrum, CH-8092 Zürich, Switzerland

> > Year 1994

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=576879

RESULTS ON MNIST DATA SET

Larry Jackel: "In hindsight, the similar test errors are not so surprising since all the researchers were using variants of the same learning principles (everyone talked to Vladimir and studied the learning curves)."

The Optimal Margin (SVM) was remarkable because, unlike the other top performers, it did not include knowledge about the geometry of the problem.

з

0

Year 1994

15 💿 nvidia.

0

LESSONS LEARNED

Look at the data during all processing steps

Solid debugging tools are critical

Validate the training data

The work is experimental in nature

Work with real data

EPILOG

1995 Deployed Holmdel neural nets at Wachovia Bank – Eventually our technology was processing 20% of the checks written in the US

1995 AT&T Bell Labs fractured

2002 AT&T Labs – mass layoffs

2003 Bell Labs work led to new programs at DARPA – LAGR, Learning Locomotion, Deep Learning, Challenges

2012 Deep Learning becomes popular triggered by availability of data, compute power and ready commercial applications

LEARNED AUTONOMY

DRIVE-AV

A full self-driving car stack

DRIVE AV

DRIVEWORKS SDK

DRIVE OS

DRIVE PX – AI CAR COMPUTER

NEW JERSEY TEAM GOAL

Solve the hard and unsolved autonomous vehicles (AV) problems using learning

To provide enhanced safety through algorithmic diversity

To create functionality that may not be achievable otherwise, such as perception-based turns or merges onto a busy highway

Additional AV labs in California, Boulder, Seattle, and Europe

NVIDIA OFFICE AT BELL WORKS IN HOLMDEL, NJ Th

1 1

An ideal location for autonomous driving R&D

Private roads for easy testing

Quick access to diverse public roads

Space to store and work on the cars

CONVENIENT LOCATION

Close to New York City (45 miles)

Accessible by commuter train, ferry, bus, and car

Family friendly, yet near a major metropolitan area

Close to popular beaches along the Jersey Shore

WHERE DO RULES FAIL?

Hand crafted features and rules work well when the problem domain is well understood

Simple rules, such as "follow the lane lines" fail quickly

 \rightarrow Can you list every feature you look at while driving?

It is extremely hard to write down every single rule required for safe driving – it is relatively easy to collect lots of training data (just drive)

LEARNING TO PREDICT THE PATH

EXAMPLE ARCHITECTURE

Single frame input with 200x66 pixel resolution

Input is from a single camera with a small patch cropped and scaled from the full image

~250,000 neuron weights, not a huge network

The network grows as we use more sensors and handle harder tasks

https://www.youtube.com/watch?v=-96BEoXJMs0&t=39s

DRIVING WITH LEARNED PATH PREDICTION

LEARNED LANE CHANGES

LEARNED TURNS

https://www.youtube.com/watch?v=Sm-NBdSzP6E

VISUALIZATION

Where does the network look?

VISUALIZATION

ATYPICAL VEHICLE CLASS

OPEN CHALLENGES

Deal with ambiguous situations

There is often more than one correct answer

Learn from imperfect behavior

Several observations in the same situation, most are correct, some are not correct

DRIVING IN THE SNOW

Thank You

