Deep Reinforcement Learning MIT 6.S191

Alexander Amini January 30, 2019

Supervised Learning

Data: (*x*, *y*) *x* is data, *y* is label

Goal: Learn function to map $x \rightarrow y$

Apple example:

This thing is an apple.

Supervised Learning

Unsupervised Learning

Data: (*x*, *y*) *x* is data, *y* is label

Goal: Learn function to map $x \rightarrow y$

Apple example:

This thing is an apple.

Data: *x x* is data, no labels!

Goal: Learn underlying structure

Supervised Learning

Unsupervised Learning

Data: (x, y)x is data, y is label

Goal: Learn function to map $x \rightarrow y$

Apple example:

This thing is an apple.

Data: *x* is data, no labels!

Goal: Learn underlying structure

Reinforcement Learning

Data: state-action pairs

Goal: Maximize future rewards over many time steps

Apple example:

Eat this thing because it will keep you alive.

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Data: (*x*, *y***)** *x* is data, *y* is labe

Data: *x* is data, no labels

Data: state-action pairs

Goal Lean RL: our focus today.

 $x \to y$

structure

Goal: Maximize future rewards over many time steps

Apple example:

Apple example:

Apple example:

Eat this thing because it will keep you alive.

Agent: takes actions.

Environment: the world in which the agent exists and operates.

Action: a move the agent can make in the environment.

Observations: of the environment after taking actions.

State: a situation which the agent perceives.

Reward: feedback that measures the success or failure of the agent's action.

Defining the Q-function

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Total reward, R_t , is the discounted sum of all rewards obtained from time t

 $Q(s, a) = \mathbb{E}[R_t]$

The Q-function captures the **expected total future reward** an agent in state, *s*, can receive by executing a certain action, *a*

How to take actions given a Q-function? $Q(s, a) = \mathbb{E}[R_t]$ f(state, action)

Ultimately, the agent needs a **policy** $\pi(s)$, to infer the **best action to take** at its state, s

Strategy: the policy should choose an action that maximizes future reward

$$\pi^*(s) = \operatorname*{argmax}_{a} Q(s, a)$$

Deep Reinforcement Learning Algorithms

Value Learning

Find Q(s, a) $a = \operatorname*{argmax}_{a} Q(s, a)$

Policy Learning

Find $\pi(s)$

Sample $a \sim \pi(s)$

Deep Reinforcement Learning Algorithms

Value Learning

Find Q(s, a) $a = \underset{a}{\operatorname{argmax}} Q(s, a)$

Policy Learning

Find $\pi(s)$

Sample $a \sim \pi(s)$

Example: Atari Breakout

It can be very difficult for humans to accurately estimate Q-values

Example: Atari Breakout

It can be very difficult for humans to accurately estimate Q-values

Which (**s**, **a**) pair has a higher Q-value?

Example: Atari Breakout - Middle

It can be very difficult for humans to accurately estimate Q-values

Which (**s**, **a**) pair has a higher Q-value?

Example: Atari Breakout - Side

It can be very difficult for humans to accurately estimate Q-values

Which (**s**, **a**) pair has a higher Q-value?

Deep Q Networks (DQN)

How can we use deep neural networks to model Q-functions?

Deep Q Networks (DQN)

How can we use deep neural networks to model Q-functions?

Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

$$\mathcal{L} = \mathbb{E}\left[\left\| \left(r + \gamma \max_{a'} Q(s', a')\right) - Q(s, a) \right\|^2\right]$$

6.S191 Introduction to Deep Learning introtodeeplearning.com

Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

6.5191 Introduction to Deep Learning introtodeeplearning.com

Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions?

6.5191 Introduction to Deep Learning

DQN Atari Results

6.5191 Introduction to Deep Learning introtodeeplearning.com

DQN Atari Results

Massachusetts Institute of Technology 6.5191 Introduction to Deep Learning

Downsides of Q-learning

Complexity:

- Can model scenarios where the action space is discrete and small
- Cannot handle continuous action spaces

Flexibility:

• Cannot learn stochastic policies since policy is deterministically computed from the Q function

To overcome, consider a new class of RL training algorithms: Policy gradient methods

IMPORTANT:

Imagine you want to predict steering wheel angle of a car!

DQN (before): Approximating Q and inferring the optimal policy,

DQN (before): Approximating Q and inferring the optimal policy,

DQN (before): Approximating Q and inferring the optimal policy,

DQN (before): Approximating Q and inferring the optimal policy,

DQN (before): Approximating Q and inferring the optimal policy,

Policy Gradient (PG): Training

function REINFORCE Initialize θ for episode ~ π_{θ} $\{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode$ for t = 1 to T-1 $\nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R_t$ $\theta \leftarrow \theta + \alpha \nabla$ return θ

- I. Run a policy for a while
- 2. Increase probability of actions that lead to high rewards
- 3. Decrease probability of actions that lead to low/no rewards

Policy Gradient (PG): Training

function REINFORCE Initialize θ for episode ~ π_{θ} $\{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode$ for t = 1 to T-1 $\nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R_t$ $\theta \leftarrow \theta + \alpha \nabla$ return θ

- I. Run a policy for a while
- 2. Increase probability of actions that lead to high rewards
- 3. Decrease probability of actions that lead to low/no rewards

Policy Gradient (PG): Training

- I. Run a policy for a while
- 2. Increase probability of actions that lead to high rewards
- 3. Decrease probability of actions that lead to low/no rewards

function REINFORCE Initialize θ for episode ~ π_{θ} $\{s_i, a_i, r_i\}_{i=1}^{T-1} \leftarrow episode$ for t = 1 to T-1 $\nabla \leftarrow \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R_t$ $\theta \leftarrow \theta + \alpha \nabla$ return θ

log-likelihood of action

```
\nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \frac{R_t}{R_t}
```

reward

The Game of Go

Aim: Get more board territory than your opponent.

Board Size n x n	Positions 3 ^{n²}	% Legal	Legal Positions
×	3	33.33%	
2×2	81	70.37%	57
3×3	19,683	64.40%	12,675
4×4	43,046,721	56.49%	24,318,165
5×5	847,288,609,443	48.90%	414,295,148,741
9×9	4.434264882×10 ³⁸	23.44%	1.03919148791×10 ³⁸
3× 3	4.300233593×10 ⁸⁰	8.66%	3.72497923077×10 ⁷⁹
9× 9	1.740896506×10 ¹⁷²	1.20%	2.08168199382×10 ¹⁷⁰

Greater number of legal board positions than atoms in the universe.

lassachusetts

Institute of

Technology

Technology

