Deep Learning: Limitations and New Frontiers MIT 6.5191

Ava Soleimany January 30, 2019

T-shirts! Today!

Course Schedule

Session	Part 1		Part 2		Lab	
1	Le ISL	aroduction to Deep Parning ides] [Video] Ining soon!		Deep Sequence Modeling [Slides] [Video] coming soon!		Intro to TensorFlow, Music Generation with RNNs [Code] <i>coming soon!</i>
2	ISL	eep Computer Vision ides] [Video] ning soon!	424	Deep Generative Models [Slides] [Video] coming soon!	3	De-biasing Facial Recognition Systems [Code] <i>coming soon!</i>
3	Le [Sl	eep Reinforcement earning ides] [Video] ning soon!		Limitations and New Frontiers [Slides] [Video] <i>coming soon!</i>	1	Model-Free Reinforcement Learning [Code] <i>coming soon!</i>
4	Ma In	ata Visualization for achine Learning fo][Slides] [Video] ning soon!	IBM	Biologically Inspired Learning [Info][Slides] [Video] coming soon!		Work time for paper reviews/project proposals
5		earing and Perception fo][Slides] [Video] ning soon!		Final Project Presentations		Judging and Awards Ceremony

Massachusetts Institute of Technology

Final Class Project

Option I: Proposal Presentation

- Present a novel deep learning research idea or application
- Groups of I welcome
- Listeners welcome
- Groups of 2 to 4 to be eligible for prizes, incl. I for-credit student
- 3 minutes
- Proposal instructions: goo.gl/JGJ5E7

- Judged by a panel of industry judges
- Top winners are awarded:

3x NVIDIA RTX 2080 Ti MSRP: \$4000 4x Google Home MSRP: \$400

Final Class Project

Option I: Proposal Presentation

- Present a novel deep learning research idea or application
- Groups of I welcome
- Listeners welcome
- Groups of 2 to 4 to be eligible for prizes, incl. I for-credit student
- 3 minutes
- Proposal instructions:

goo.gl/JGJ5E7

Proposal Logistics

- >= I for-credit student to be eligible for prizes
- Prepare slides on Google Slides
- Group submit by today 10pm: goo.gl/rV6rLK
- In class project work: **Thu, Jan 31**
- Slide submit by Thu 11:59 pm: goo.gl/7smL8w
- Presentations on Friday, Feb I

Final Class Project

Option I: Proposal Presentation

- Present a novel deep learning research idea or application
- Groups of I welcome
- Listeners welcome
- Groups of 2 to 4 to be eligible for prizes, incl. I for-credit student
- 3 minutes
- Proposal instructions: goo.gl/JGJ5E7

Option 2: Write a 1-page review of a deep learning paper

- Grade is based on clarity of writing and technical communication of main ideas
- Due **Friday I:00pm** (before lecture)

Thursday: Visualization in ML + Biologically Inspired Learning

Fernanda Viegas, Co-Director Google PAIR Data Visualization for Machine Learning

Dmitry Krotov, MIT-IBM Watson Al Lab Biologically Inspired Deep Learning

Final project work

Ask us questions!

Open office hours!

Work with group members!

IBM Research

Friday: Learning and Perception + Project Proposals + Awards + Pizza

Jan Kautz, VP of Research Learning and Perception **Project Proposals!**

Judging and Awards!

Pizza Celebration!

'Deep Voice' Software Can Clone Anyone's Voice With Just 3.7 Seconds of Audio

Using snippets of voices, Baidu's 'Deep Voice' can generate new speech, accents, and tones.

'Creative' AlphaZero leads way for chess computers and, maybe, science

Former chess world champion Garry Kasparov likes what he sees of computer that could be used to find cures for diseases

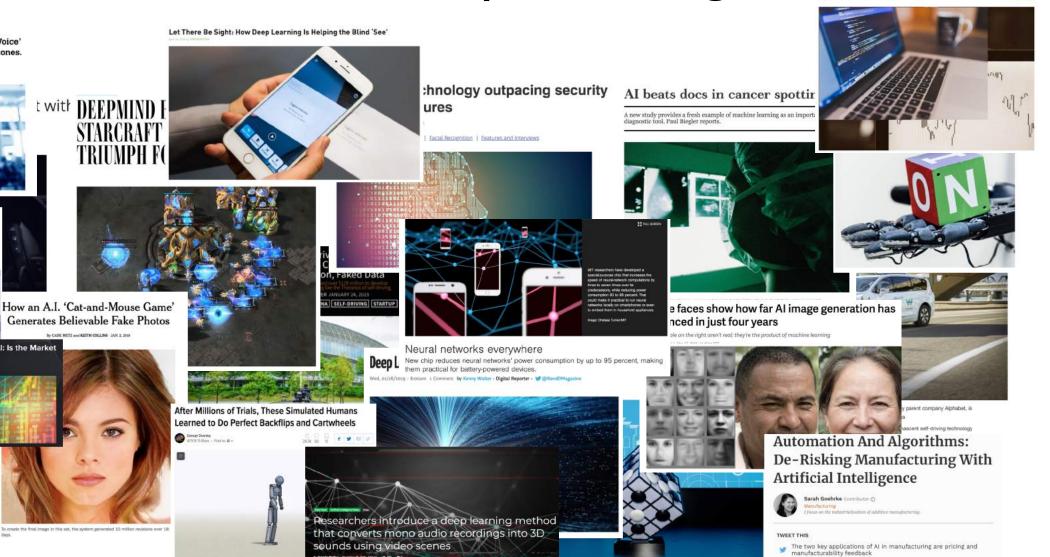
Stock Predictions Based On Al: Is the Market Truly Predictable?

Complex of bacteria-infecting viral proteins modeled in CASP 13. The complex cont that were modeled individually. PROTEIN DATA BANK

Google's DeepMind aces protein folding

By Robert F. Service | Dec. 6, 2018, 12:05 PM

The Rise of Deep Learning

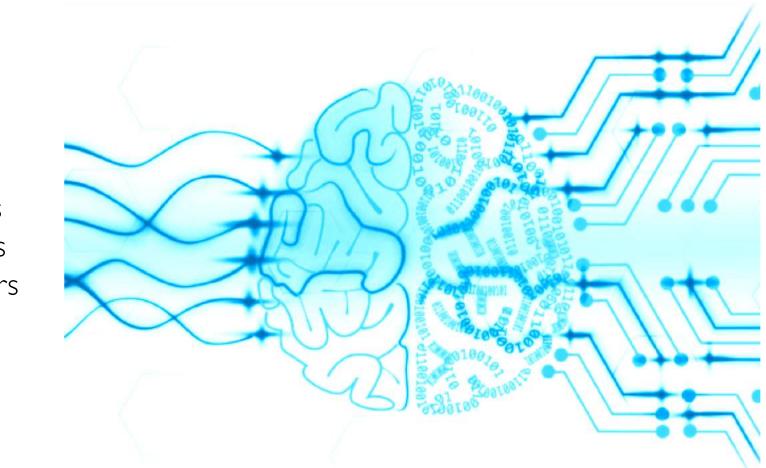


6.S191 Introduction to Deep Learning introtodeeplearning.com Al Can Help In Predicting Cryptocurrency

Value

C II, Schorth Lost and Art 25,201

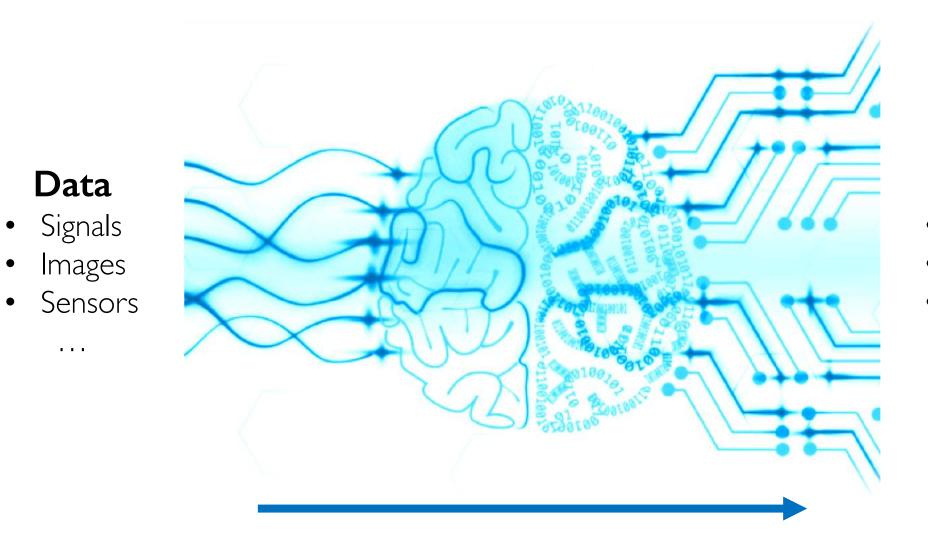
Massachusetts Institute of Technology



Data

- Signals
- Images
- Sensors

. . .



Decision

- Prediction
- Detection

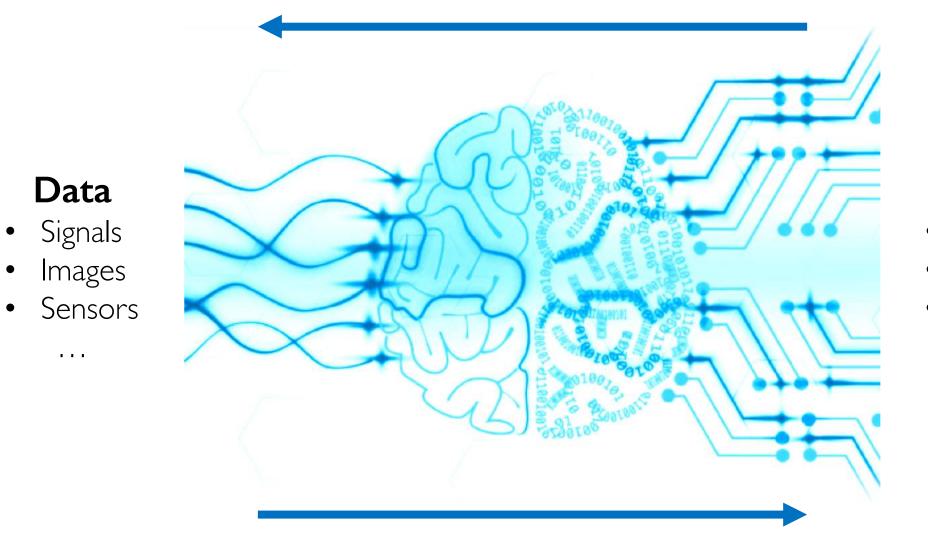
. . .

• Action

•

•

. . .



Decision

- Prediction
- Detection ٠

. . .

• Action

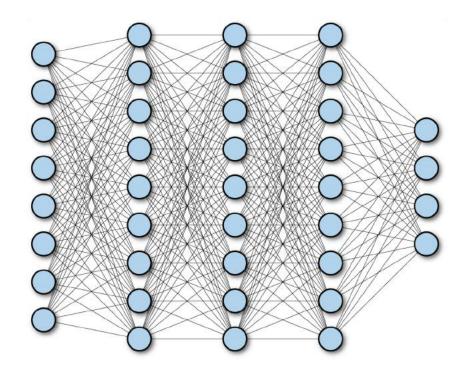
•

•

Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.



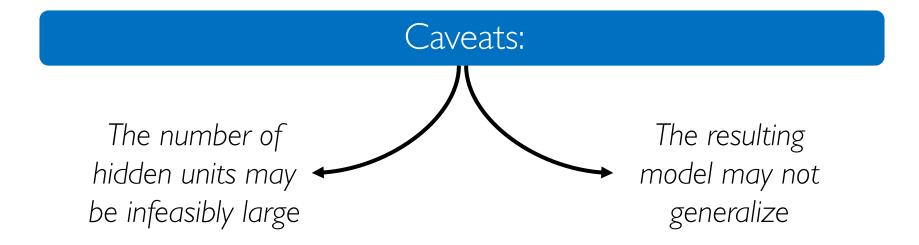
Massachusetts Institute of Technology

6.5191 Introduction to Deep Learning introtodeeplearning.com Hornik et al. Neural Networks. (1989)

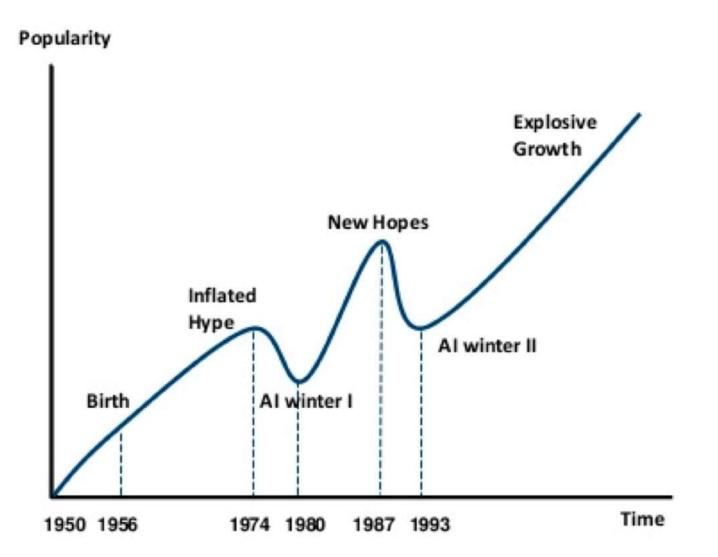
Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.



Artificial Intelligence "Hype": Historical Perspective



Limitations

"Understanding Deep Neural Networks Requires Rethinking Generalization"

dog

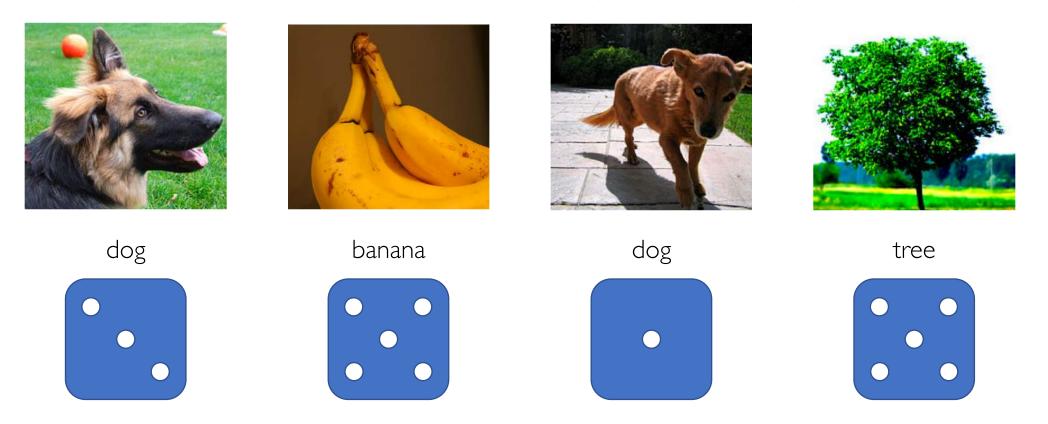
banana

dog

tree

Zhang et al. ICLR. (2017)

"Understanding Deep Neural Networks Requires Rethinking Generalization"



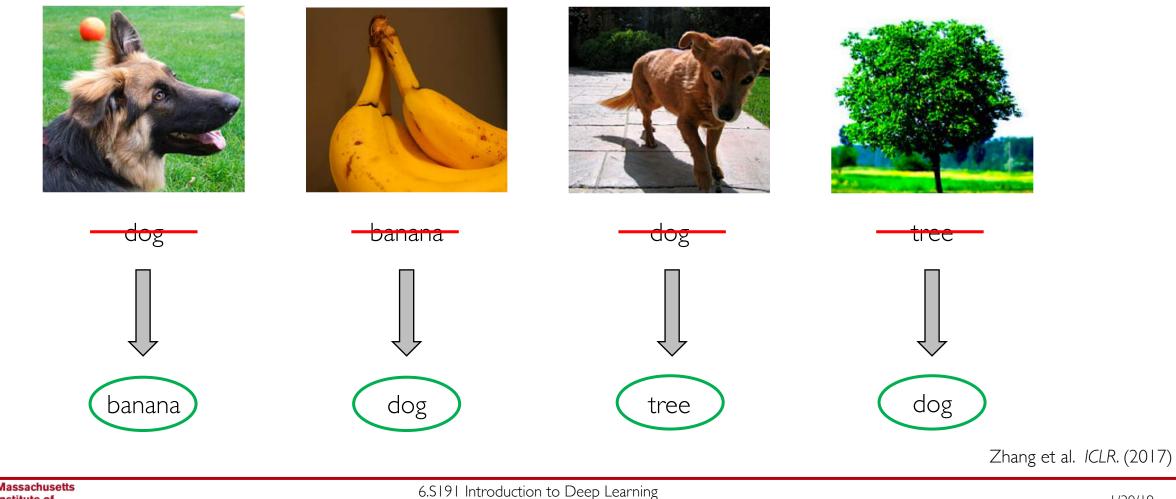
Zhang et al. ICLR. (2017)

"Understanding Deep Neural Networks Requires Rethinking Generalization"



6.5191 Introduction to Deep Learning introtodeeplearning.com

"Understanding Deep Neural Networks Requires Rethinking Generalization"

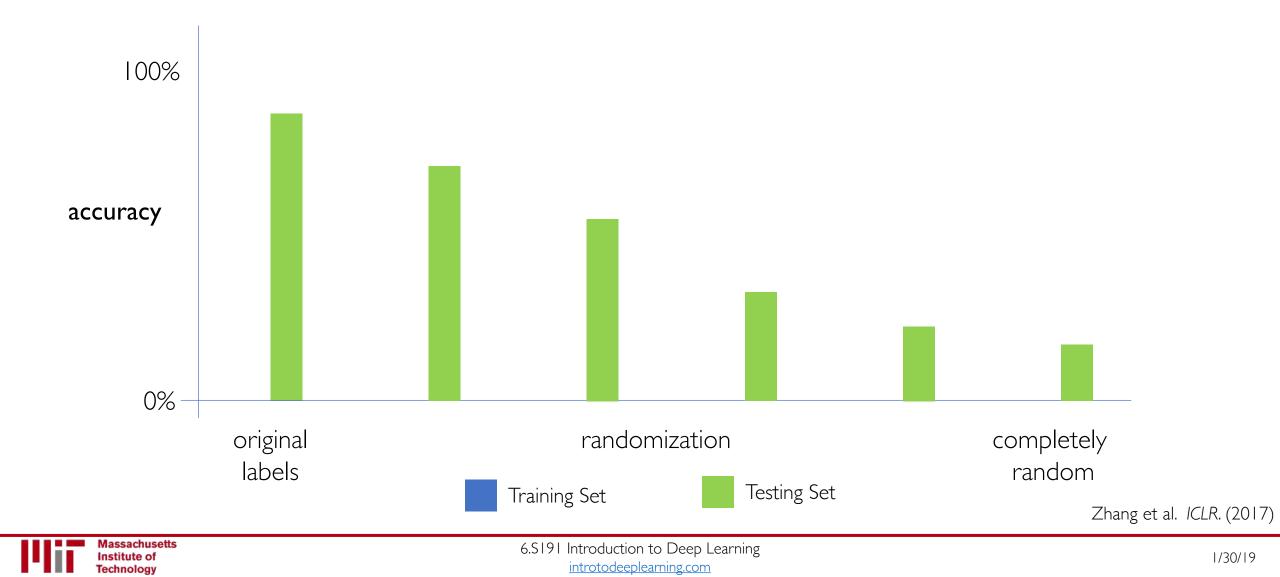


introtodeeplearning.com

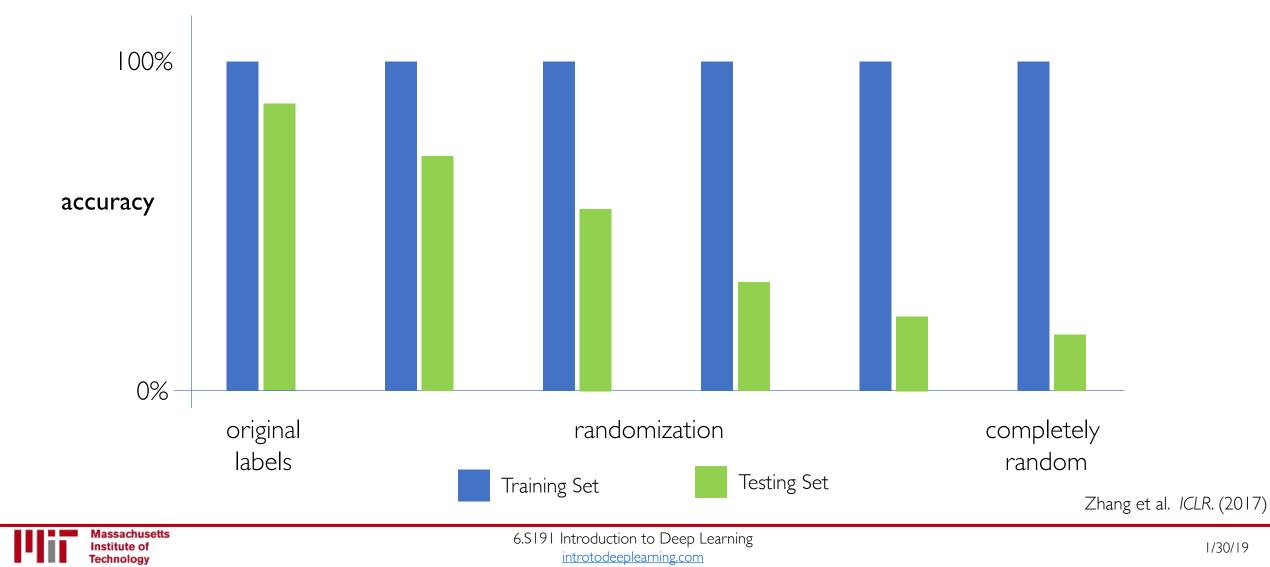
Institute of

Technology

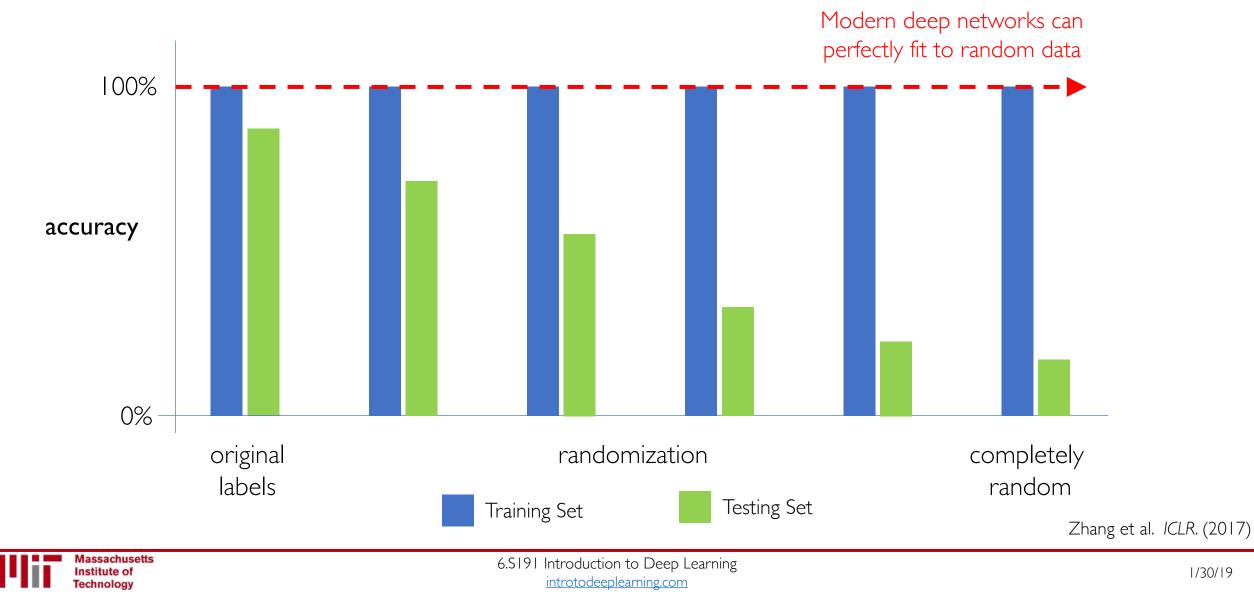
Capacity of Deep Neural Networks



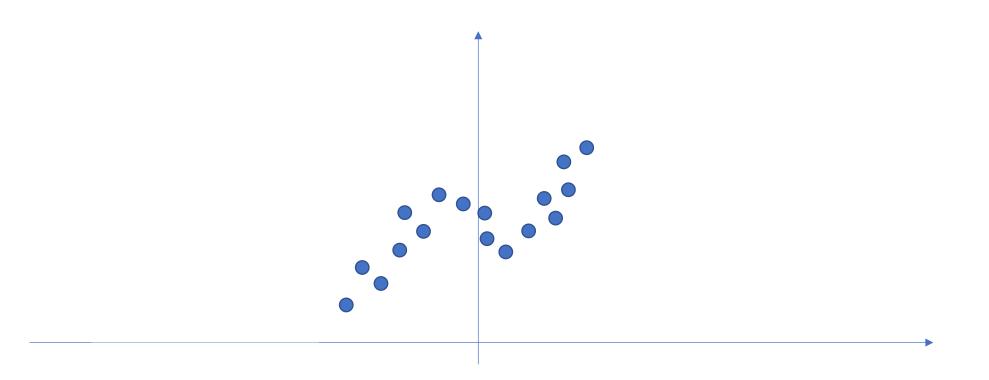
Capacity of Deep Neural Networks

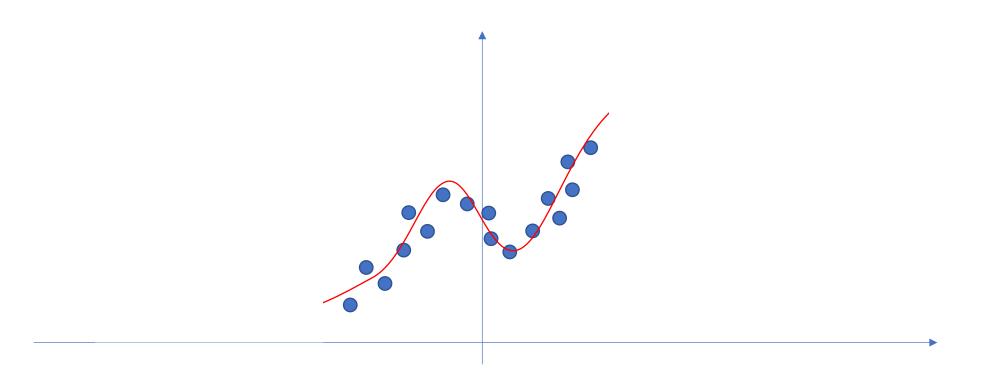


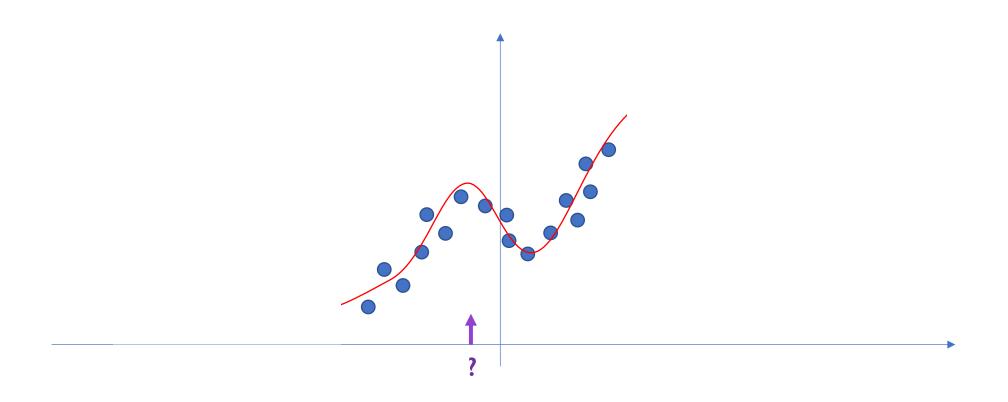
Capacity of Deep Neural Networks

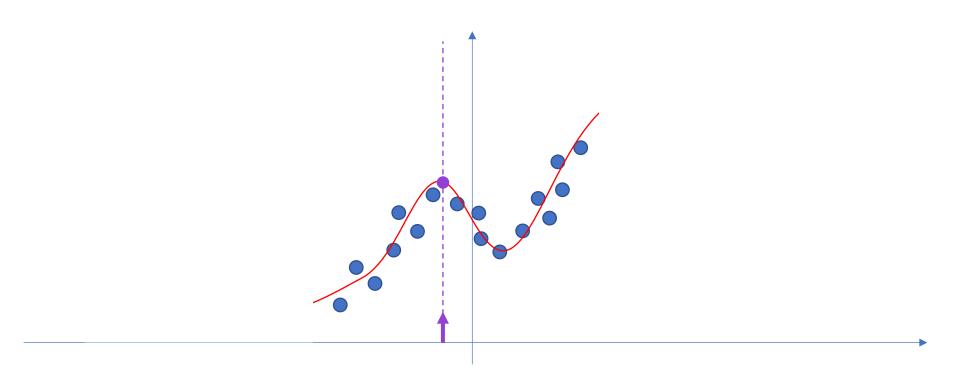


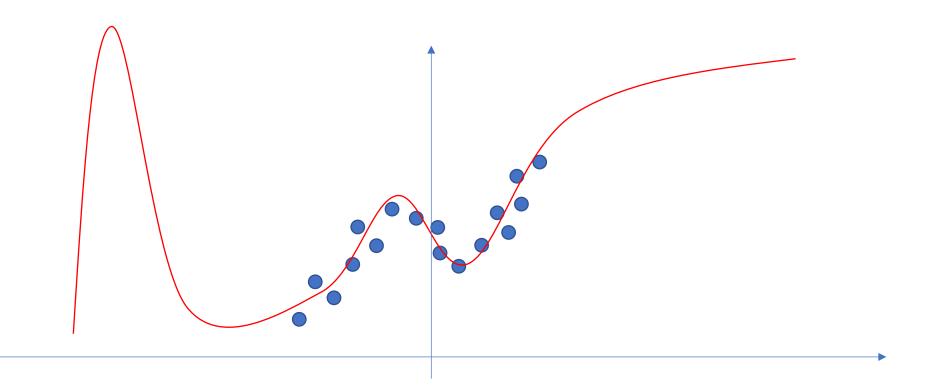
1/30/19



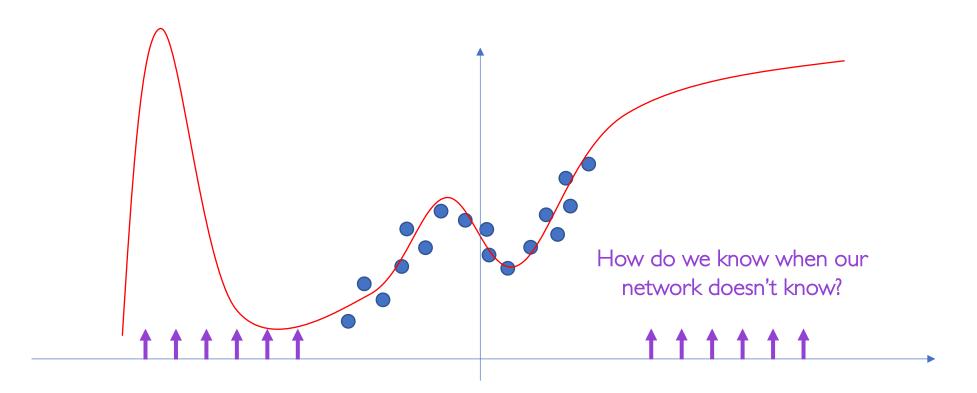


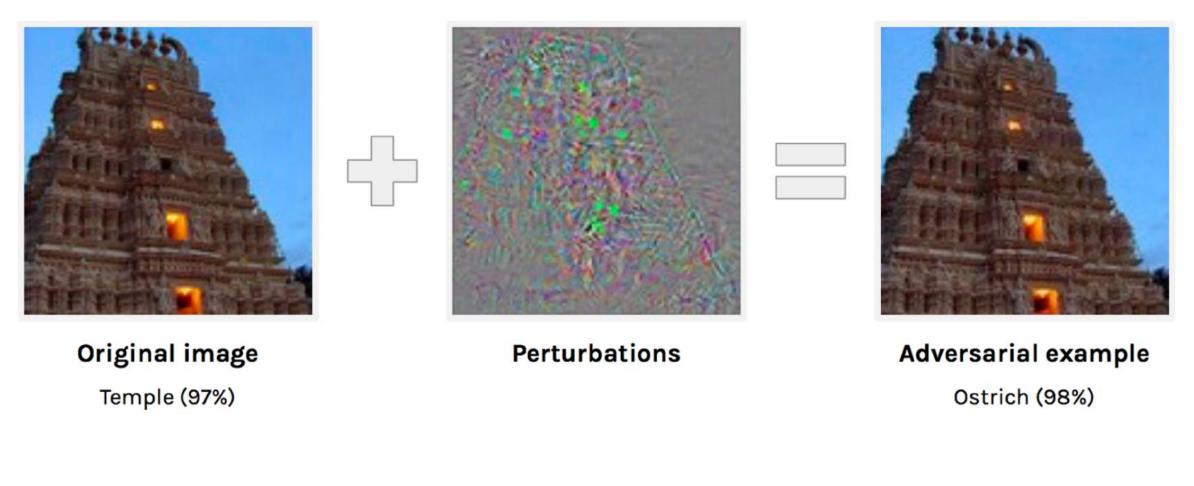






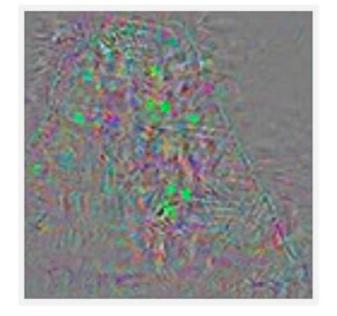
Neural networks are **excellent** function approximators ...when they have training data





Despois. "Adversarial examples and their implications" (2017).

Original image Temple (97%)



Perturbations

Adversarial example Ostrich (98%)

Remember:

We train our networks with gradient descent

$$\theta \leftarrow \theta - \eta \, \frac{\partial J(\theta, x, y)}{\partial \theta}$$

"How does a small change in weights decrease our loss"

Remember:

We train our networks with gradient descent

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \frac{\partial J(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{\theta}}$$

"How does a small change in weights decrease our loss"

Remember:

We train our networks with gradient descent

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \frac{\partial J(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y})}{\partial \boldsymbol{\theta}}$$

Fix your image x, and true label y

"How does a small change in weights decrease our loss"

Adversarial Image:

Modify image to increase error

$$x \leftarrow x + \eta \, \frac{\partial J(\theta, x, y)}{\partial x}$$

"How does a small change in the input increase our loss"

Goodfellow et al. NIPS (2014)

Adversarial Attacks on Neural Networks

Adversarial Image:

Modify image to increase error

$$x \leftarrow x + \eta \frac{\partial J(\theta, x, y)}{\partial x}$$

"How does a small change in the input increase our loss"

Adversarial Attacks on Neural Networks

Adversarial Image:

Modify image to increase error

$$x \leftarrow x + \eta \frac{\partial J(\theta, x, y)}{\partial x}$$

Fix your weights heta, and true label y

"How does a small change in the input increase our loss"

Synthesizing Robust Adversarial Examples

Athalye et al. *ICML*. (2018)

6.5191 Introduction to Deep Learning

introtodeeplearning.com

Neural Network Limitations...

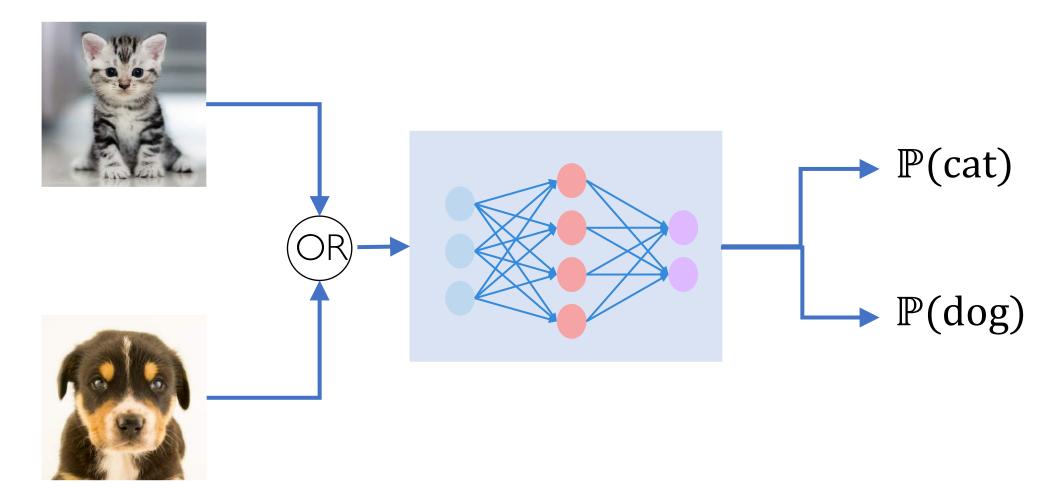
- Very **data hungry** (eg. often millions of examples)
- **Computationally intensive** to train and deploy (tractably requires GPUs)
- Easily fooled by **adversarial examples**
- Can be subject to **algorithmic bias**
- Poor at **representing uncertainty** (how do you know what the model knows?)
- Uninterpretable **black boxes**, difficult to trust
- Finicky to optimize: non-convex, choice of architecture, learning parameters
- Often require **expert knowledge** to design, fine tune architectures

Neural Network Limitations...

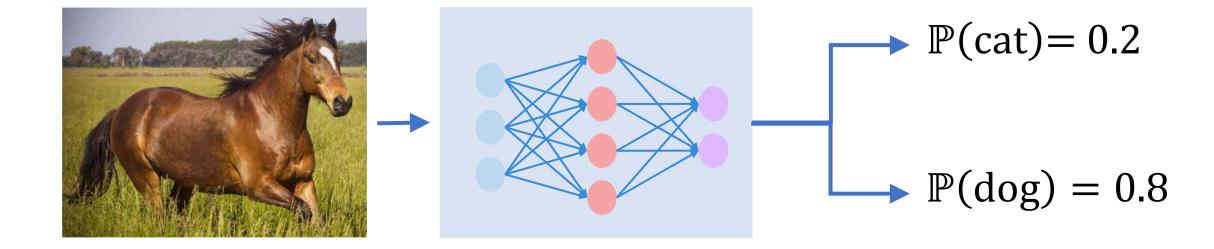
- Very **data hungry** (eg. often millions of examples)
- **Computationally intensive** to train and deploy (tractably requires GPUs)
- Easily fooled by **adversarial examples**
- Can be subject to **algorithmic bias**
- Poor at **representing uncertainty** (how do you know what the model knows?)
- Uninterpretable **black boxes**, difficult to trust
- Finicky to optimize: non-convex, choice of architecture, learning parameters
- Often require **expert knowledge** to design, fine tune architectures

New Frontiers I: Bayesian Deep Learning

Why Care About Uncertainty?



Why Care About Uncertainty?



Remember: $\mathbb{P}(cat) + \mathbb{P}(dog) = 1$

Bayesian Deep Learning for Uncertainty

Network tries to learn output, \boldsymbol{Y} , directly from raw data, \boldsymbol{X}

Find mapping, f, parameterized by weights $\boldsymbol{\theta}$ such that $\min \mathcal{L}(\boldsymbol{Y}, f(\boldsymbol{X}; \boldsymbol{\theta}))$

Bayesian neural networks aim to learn a posterior over weights, $\mathbb{P}(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{Y})$:

$$\mathbb{P}(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{Y}) = \frac{\mathbb{P}(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\boldsymbol{Y}|\boldsymbol{X})}$$

Bayesian Deep Learning for Uncertainty

Network tries to learn output, \boldsymbol{Y} , directly from raw data, \boldsymbol{X}

Find mapping, f, parameterized by weights $\boldsymbol{\theta}$ such that $\min \mathcal{L}(\boldsymbol{Y}, f(\boldsymbol{X}; \boldsymbol{\theta}))$

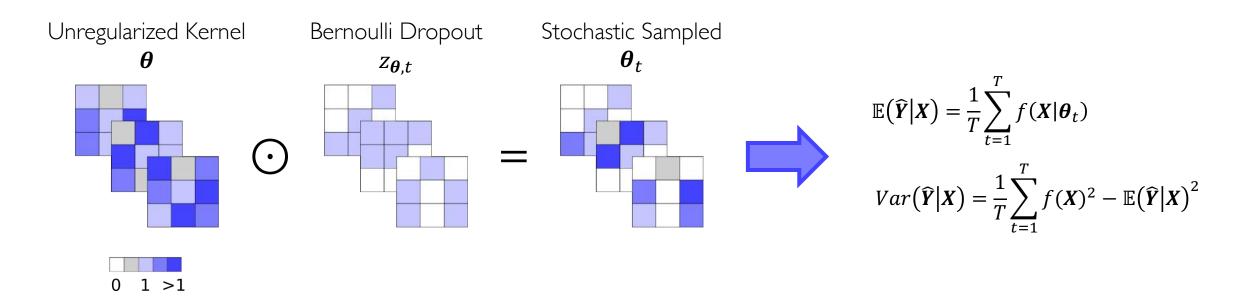
Bayesian neural networks aim to learn a posterior over weights, $\mathbb{P}(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{Y})$:

Intractable!
$$\mathbb{P}(\boldsymbol{\theta}|\boldsymbol{X},\boldsymbol{Y}) = \frac{\mathbb{P}(\boldsymbol{Y}|\boldsymbol{X},\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\boldsymbol{Y}|\boldsymbol{X})}$$

Elementwise Dropout for Uncertainty

Evaluate T stochastic forward passes through the network $\{\boldsymbol{\theta}_t\}_{t=1}^T$

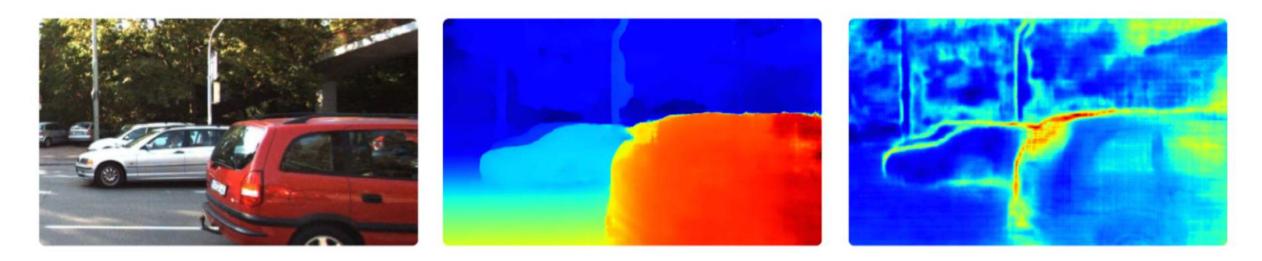
Dropout as a form of stochastic sampling $z_{w,t} \sim Bernoulli(p) \quad \forall w \in \theta$



Gal and Ghahramani, ICML, 2016.

Amini, Soleimany, et al., NIPS Workshop on Bayesian Deep Learning, 2017.

Model Uncertainty Application



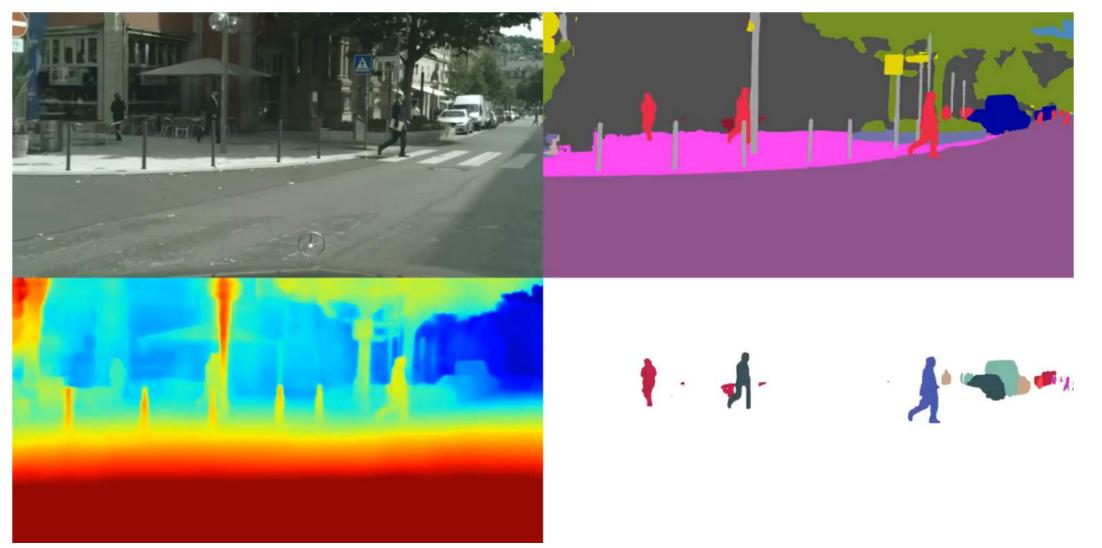
Input image

Predicted Depth

Model Uncertainty

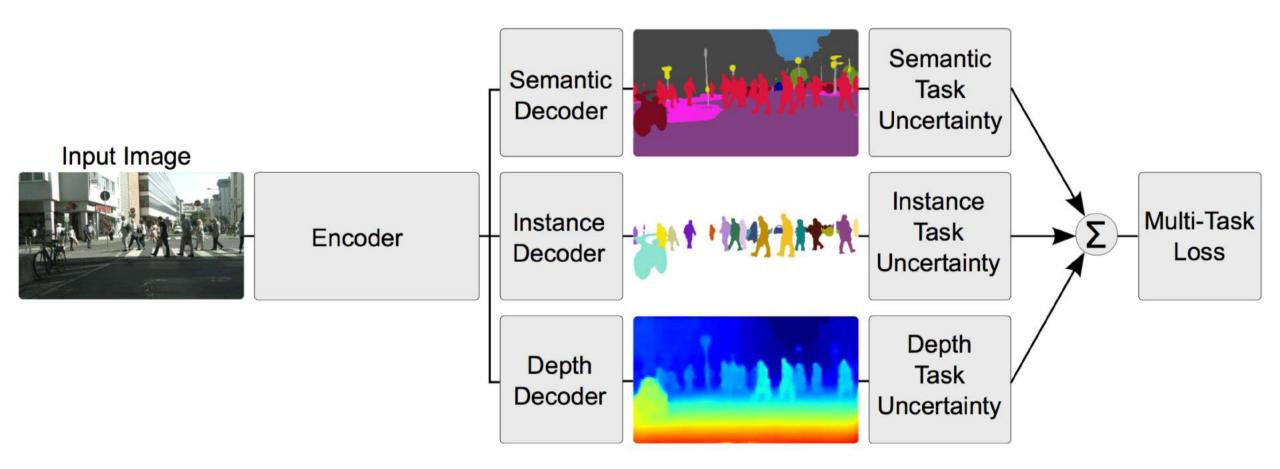
Kendall, Gal, NIPS, 2017.

Multi-Task Learning Using Uncertainty



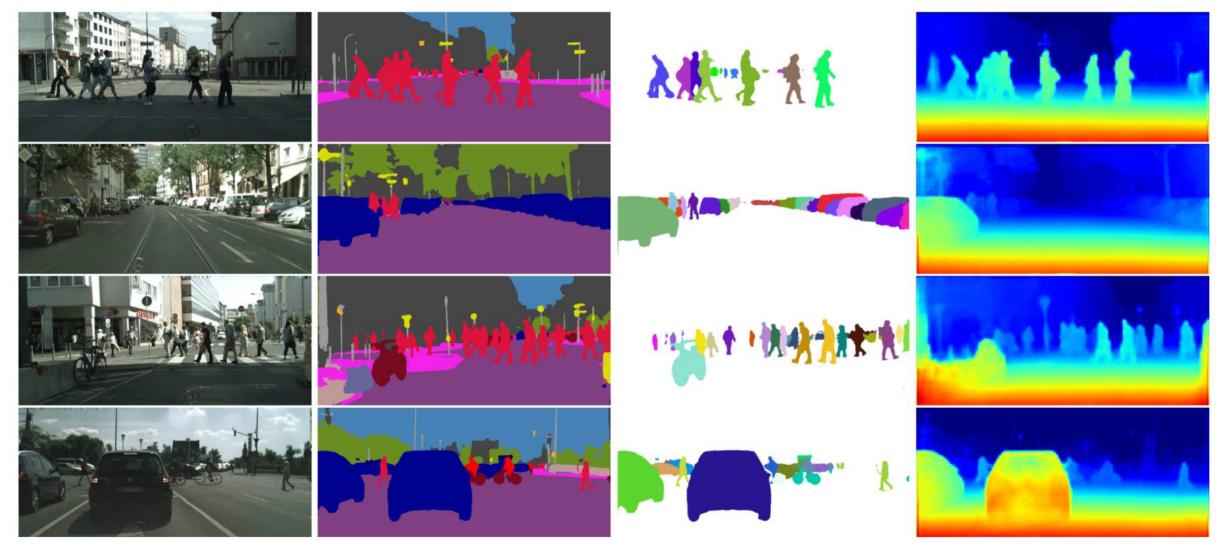
Kendall, et al., CVPR, 2018.

Multi-Task Learning Using Uncertainty



Kendall, et al., CVPR, 2018.

Multi-Task Learning Using Uncertainty

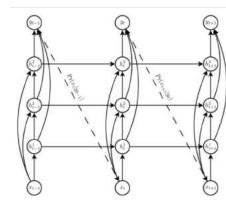


Kendall, et al., CVPR, 2018.

New Frontiers II: Learning to Learn

Motivation: Learning to Learn

Standard deep neural networks are optimized for **a single task**





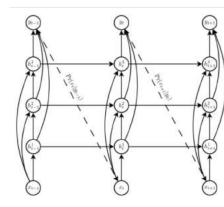
Complexity of models increases

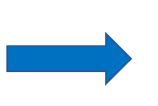
Greater need for specialized engineers

Often require **expert knowledge** to build an architecture for a given task

Motivation: Learning to Learn

Standard deep neural networks are optimized for **a single task**





Complexity of models increases

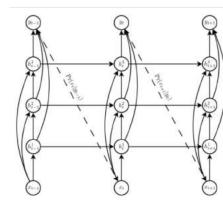
Greater need for specialized engineers

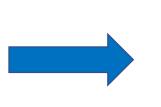
Often require **expert knowledge** to build an architecture for a given task

Build a learning algorithm that learns which model to use to solve a given problem

Motivation: Learning to Learn

Standard deep neural networks are optimized for **a single task**





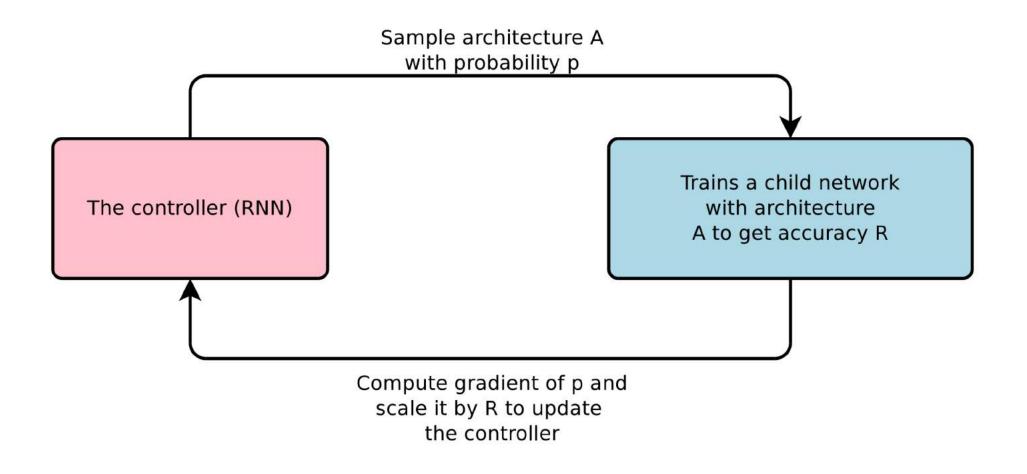
Complexity of models increases

Greater need for specialized engineers

Often require **expert knowledge** to build an architecture for a given task

Build a learning algorithm that learns which model to use to solve a given problem

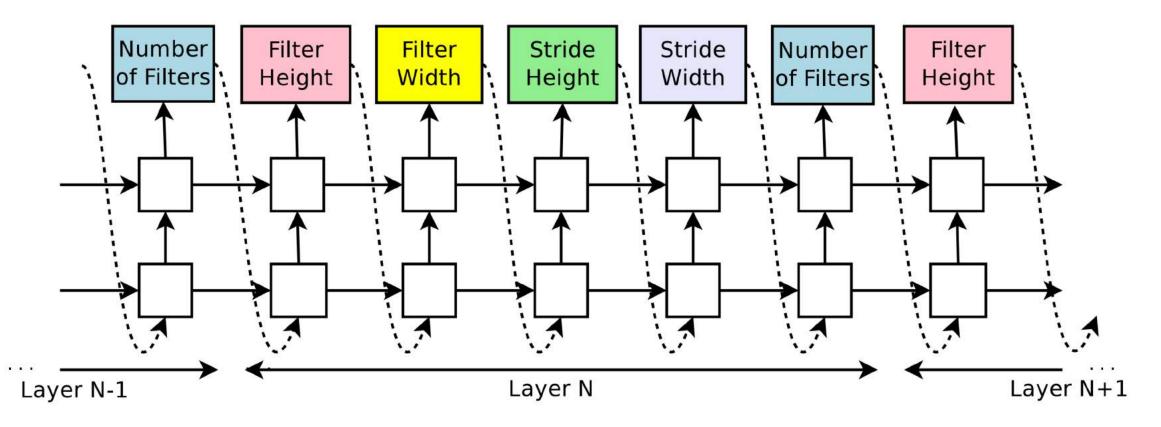
AutoML: Learning to Learn



Zoph and Le, ICLR 2017.

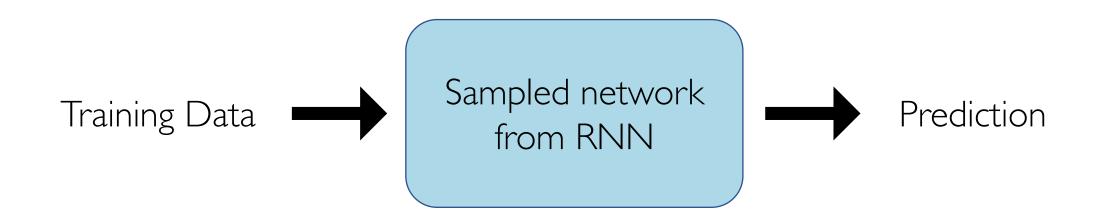
AutoML: Model Controller

At each step, the model samples a brand new network



Zoph and Le, ICLR 2017.

AutoML:The Child Network



Compute final accuracy on this dataset.

Update RNN controller based on the accuracy of the child network after training.

Zoph and Le, ICLR 2017.

AutoML on the Cloud

AutoML Vision^{BETA}

Start with as little as a few dozen photographic samples, and Cloud AutoML will do the rest.

AutoML Natural Language^{BETA}

Automatically predict text categories through either single or multi-label classification.

AutoML Translation^{BETA}

Upload translated language pairs to train your own custom model.

Google Cloud.

AutoML Spawns a Powerful Idea

- Design an AI algorithm that can build new models capable of solving a task
- Reduces the need for experienced engineers to design the networks
- Makes deep learning more accessible to the public

Connection to Artificial General Intelligence: the ability to intelligently reason about how we learn

