Data Visualization for Machine Learning
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PAIR | People + Al Research Initiative

Bringing Design Thinking and HCI to Machine Learning
google.ai/pair

Open Source tools Educational Academic Public presentations, Public Symposia
and platforms Materials Publications sharing best practices & meetings
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Training data

IS crucial Debug your data before
debugging your model




Let's start with a data set you might have heard of @

® O ®  5oFAR-108naCIFAR-100 X | &
« C A (O https://www.cs.toronto.edu/~kriz/cifar.html .=
i Apps ok Bookmarks w30 [y p>E Oy E5p 5 NEwSBR G G.BA [} WTMLEmtitesforcy B ML [ Fractures 1Ll Other Bookmarks

< Back to Alex Krizhevsky's home page

The CIFAR-10 and CIFAR-100 are labeled subsets of the 80 million tiny images d. They were coll d by Alex Krizhevsky, Vined Nair, and
Geoffrey Hinton.

The CIFAR-10 dataset

The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000
test images.

The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected
images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from
one class than another. Between them, the training batches contain exactly 5000 images from each class.

Here are the classes in the dataset, as well as 10 random images from each:

airplane H .

bird
cat
deer
dog
frog
horse

ship sl e
BESs

truck

The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile” includes sedans, SUVs, things of that
sort. "Truck” includes only big trucks. Neither includes pickup trucks.



32 x 32 Images
10 classes




Facets . ¢

Open-source
pair-code.github.io/facets
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Gender Shades

Joy Buolamwini
MIT Media Lab




What-If Tool

open source
code-free ML probing
pair-code.github.io/what-if-tool

oo

Whatf Too! demo - binary classifier for predicting satary of over S50k - UCH census Income dataset

Show neseest dilamat casuification @
PERF + FAIRNESS Nt EDGh FEATURES e il g
- aoe - 1 maniabstat - T iference
Select a datapoint to begin exploring -

features and values.

Clheklng ona dﬂapo‘m in the visuslization will load all the features
nd values d with that ple. Here are some of the

mmgsyoucand«
+  Edit features and values and rerun inference to see how your model

performs.
. pute D Select an 10 be an anchar and create a new
L‘qumhnuﬂwnlladadeumph

rf: ks: For classification models, find the closest
Wmthadm:mdasiﬁauonushgu or L2 distance.
« Partial Plots: For exploce plots for
myhnmmn:hwmodnmhmhvmmmmm
valid values for that feature.

Use the Performance + Fairness tab to
investigate model performance across your
dataset.

Use the Features tab to view statistics about
your dataset.




What-If Tool

Fairness metrics

Compare Slices

Slice by

What does slicing do?
Mouth_Slightly_Open -

Investigate performance for the groups of examples with each unique value of the seiected feature.

Slice by (secondary)

Specify a second feature to slice the data by
<none> v
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Model

UnderStanding Looking into high-dimensional

spaces
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Images as vectors



Images as vectors




Images as vectors

111111111,.80.511111,8,.3,0,0,. -3,.1,0,00,0,0,.4,91, ...)



We've turned this image Into this vector

11111111180.5111..)

784 pixels — 784 dimensions




We've turned this image Into this vector

% (111111111.80,5111..)

x 784 pixels — 784 dimensions

(11111111.6.70,4111..)

8 (1,1,1,1,1,1,1,1,4,5,0.3,2,1,1,... )



Embedding projector
MNIST visualization



http://projector.tensorflow.org/

Model interpretability use case

Multi-lingual translation
What does the language embedding space look like?

https://arxiv.org/abs/1611.04558
Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat, Fernanda Viégas,
Martin Wattenberg, Greg Corrado, Macduff Hughes, Jeffrey Dean



Training:  English «— — Japanese
English <« — Korean

Training

[ English ] [ English }

Google Neural
Machine Translation

[ Japanese } [ Japanese ]

[ Korean } [ Korean ]




Training:  English «— — Japanese
English <« — Korean
Japanese «<— — Korean (zero shot)

Training

[ English ] English }

Google Neural [
Machine Translation

[ Japanese ] { Japanese ]
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Visualize internal representation ("embedding space")
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Research question
What does the mult

?

language embedding space look like

Note: not real data



What does a sentence look like in embedding space?
(points in 1024-dim space: the data that the decoder receives)

E.g. “The stratosphere extends from 10km to 50km in altitude”



What does a sentence look like in embedding space?

50
10 . i
altitude @
to . in
The @ from @
extends @
stratosphere .

Note: simplification of real situation!



What does a sentence look like in embedding space?

50,

The
extends

stratosphere



What do parallel sentences look like in embedding space?
(same meaning, different language)

like this?

<2pt> The

® English
stratosphere o Portuguese



What do parallel sentences look like in embedding space?
(same meaning, different language)

or like this?

- == @English
@ Portuguese



Interlingua?

Sentences with the same meaning mapped to similar regions regardless of language!
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The stratosphere extends from about
10km to about 50km in altitude.
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Distance between bridge / non-bridge sentences is inversely related to translation quality

BLEU score

‘ pt->en
. en->es
@ 5t -> es (bridge)

®

Figure 3: (a) A bird's-eye view of a t-SNE projection of an embedding of the model trained on

Portuguese—English (blue) and English—Spanish (yellow) examples with a Portugnese—Spanish zero-
shot bridge (red). The large red region on the left primarily contains the zero-shot Portuguese—Spanish
translations. (b) A scatter plot of BLEU scores of zero-shot translations versus the average point-wise distance

between the zero-shot translation and a non-bridged translation. The Pearson correlation coefficient is —(.42

average distance @






Word embeddings

Country and Capital Vectors Projected by PCA
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