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ABSTRACT
Recent research has highlighted the vulnerabilities of modern ma-

chine learning based systems to bias, especially towards segments

of society that are under-represented in training data. In this work,

we develop a novel, tunable algorithm formitigating the hidden, and

potentially unknown, biases within training data. Our algorithm

fuses the original learning task with a variational autoencoder to

learn the latent structure within the dataset and then adaptively

uses the learned latent distributions to re-weight the importance

of certain data points while training. While our method is gener-

alizable across various data modalities and learning tasks, in this

work we use our algorithm to address the issue of racial and gender

bias in facial detection systems. We evaluate our algorithm on the

Pilot Parliaments Benchmark (PPB), a dataset specifically designed

to evaluate biases in computer vision systems, and demonstrate

increased overall performance as well as decreased categorical bias

with our debiasing approach.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Ma-
chine learning; Neural networks.
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1 INTRODUCTION
Machine learning (ML) systems are increasingly making decisions

that impact the daily lives of individuals and society in general. For

example, ML and artificial intelligence (AI) are already being used

to control end-to-end autonomous vehicles [2], how long a criminal

should spend in prison [6], the order in which a person is presented

the news [27], or even diagnose and treat medical patients [24].

The development and deployment of fair and unbiased AI sys-

tems is crucial to prevent any unintended side effects and to ensure

the long-term acceptance of these algorithms [12, 25, 31]. Even

the seemingly simple task of facial recognition [4, 23, 32] has been

shown to be subject to extreme amounts of algorithmic bias among

select demographics. For example, Klare et al. [20] analyzed the face

detection system used by the US law enforcement and discovered

significantly lower accuracy among dark women between the age

of 18-30 years old. This is especially concerning since these facial

recognition systems are often not deployed in isolation but rather

as part of a larger surveillance or criminal detection pipeline [1].

While deep learning based systems have been shown to achieve

state-of-the-art performance on many of these tasks, it has also

been demonstrated that algorithms trained with biased data lead to

algorithmic discrimination [3, 8, 10]. Recently, benchmarks quanti-

fying discrimination [16, 18] and even datasets designed to evaluate

the fairness of these algorithms [9] have emerged. However, the

problem of severely imbalanced training datasets and the question

of how to integrate debiasing capabilities into AI algorithms still

remain largely unsolved.

In this paper, we tackle the challenge of integrating debiasing

capabilities directly into a model training process that adapts au-

tomatically and without supervision to the shortcomings of the

training data. Our approach features an end-to-end deep learning

algorithm that simultaneously learns the desired task (e.g., facial

detection) as well as the underlying latent structure of the training

data. Learning this latent distribution in an unsupervised manner

enables us to uncover hidden or implicit biases within the training

data. Our algorithm, which is built on top of a variational autoen-

coder (VAE), is capable of identifying under-represented examples

in the training dataset and subsequently increasing the probability

at which the learning algorithm samples these data points (Fig. 1).

Our algorithm is applicable to a wide range of computer vision

tasks and has also been used to successfully debias end-to-end

autonomous vehicle controllers [3]. In this paper, we demonstrate

how our algorithm can also be used to debias a facial detection
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Figure 1: Batches sampled for training without (left) and
with (right) learned debiasing. The proposed algorithm iden-
tifies, in an unsupervised manner, under-represented parts
of training data and subsequently increases their respective
sampling probability. The resulting batch (right) from the
CelebA dataset shows increased diversity in features such
as skin color, illumination, and occlusions.

system trained on a biased dataset and to provide interpretations of

the learned latent variables which our algorithm actively debiases

against. Finally, we compare the performance of our debiased model

to a standard deep learning classifier by evaluating racial and gender

bias on the Pilot Parliaments Benchmark (PPB) dataset [9].

The key contributions of this paper can be summarized as:

(1) A novel, tunable debiasing algorithm which utilizes learned

latent variables to adjust the respective sampling probabili-

ties of individual data points while training; and

(2) A semi-supervised model for simultaneously learning a de-

biased classifier as well as the underlying latent variables

governing the given classes; and

(3) Analysis of our method for facial detection with biased train-

ing data and evaluation to measure algorithmic fairness

across different races and genders.

The remainder of this paper is structured as follows: we summa-

rize the related work in Sec. 2, formulate the model and debiasing

algorithm in Sec. 3, describe our experimental results in Sec. 4, and

provide concluding remarks in Sec. 5.

2 RELATEDWORK
Interventions that seek to introduce fairness into machine learning

pipelines generally fall into one of three categories: those that use

data pre-processing before training, in-processing during training,

and post-processing after training. Several pre-processing and in-

processingmethods rely on new, artificially generated debiased data

[11] or resampling [26]. However, these approaches have largely

focused on class imbalances, rather than variability within a class,

and fail to use any information about the structure of the under-

lying latent features. Learning the latent structure of data has a

long standing history in machine learning, including Expectation-

Maximization [5], topic modelling [7], latent-SVM [14], and more

recently, variational autoencoders (VAE) [19, 29]. The presented

work uses a novel VAE-based approach for resampling based on the

data’s underlying latent structure, debiases automatically during

training, and does not require any data pre-processing or annota-

tion prior to training or testing.

Resampling for class imbalance:Resampling approaches have

largely focused on addressing class imbalances [26, 34], as opposed

to biases within individual classes. For example, duplicating in-

stances of the minority class as in [22] has been used as a pre-

processing step for mitigating class imbalance, yet is not capable of

running adaptively during training itself. Further, applying these

approaches to debiasing variabilities within a class would require

a priori knowledge of the latent structure to the data, which ne-

cessitates manual annotation of the desired features. On the other

hand, our approach debiases variability within a class automatically

during training and learns the latent structure from scratch in an

unsupervised manner.

Generating debiased data: Recent approaches have utilized

generative models [30] and data transformations [11] to generate

training data that is more ‘fair’ than the original dataset. For ex-

ample, Sattigeri et al. [30] used a generative adversarial network

(GAN) to output a reconstructed dataset similar to the input but

more fair with respect to certain attributes. Pre-processing data

transformations that mitigate discrimination [11] have also been

proposed, yet such methods are not learned adaptively during train-

ing nor do they provide realistic training examples. In contrast to

these works, we do not rely on artificially generated data, but rather

use a resampled, more representative subset of the original dataset

for debiasing.

Clustering to identify bias: Supervised learning approaches

have also been used to characterize biases in imbalanced data sets.

Specifically, k-means clustering has been employed to identify clus-

ters in the input data prior to training and to inform resampling

the training data into a smaller set of representative examples [28].

However, this method cannot scale to high dimensional data like

images or cases where there is no notion of a data ‘cluster’ and

relies on significant pre-processing to extract features. Our algo-

rithm overcomes these limitations by learning the underlying latent

structure using a variational approach.

3 METHODOLOGY
3.1 Problem Setup
Consider the problem of binary classification in which we are

presented with a set of paired training data samples Dtrain =

{(x (i),y(i))}ni=1 consisting of features x ∈ Rm and labels y ∈ Rd .
Our goal is to find a functional mapping f : X → Y parameterized

by θ which minimizes a certain loss L(θ ) over our entire training
dataset. In other words, we seek to solve the following optimization

problem:

θ∗ = argmin

θ

1

n

n∑
i=1
Li (θ ) (1)

Given a new test example, (x ,y), our classifier should ideally output
ŷ = fθ (x)where ŷ is “close” toy, with the notion of closeness being
defined from the original loss function. Now, assume that each

datapoint also has an associated continuous latent vector z ∈ Rk

which captures the hidden, sensitive features of the sample [33].

We can formalize the notion of a biased classifier as follows:
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Definition 1. A classifier, fθ (x), is biased if its decision changes
after being exposed to additional sensitive feature inputs. In other
words, a classifier is fair with respect to a set of latent features, z, if:
fθ (x) = fθ (x , z).

For example, when deciding if an image contains a face or not, the

skin color, gender, or even age of the individual are all underlying

latent variables, and changes to any of their specific values should

not alter the classifier’s ultimate decision.

To ensure fairness of a classifier across these various latent vari-

ables, the dataset should contain roughly uniform samples over the

latent space. In other words, the training distribution itself should

not be biased to overrepresent a certain category while under-

representing others. Note that this is different than claiming that

our dataset should be balanced with respect to the classes (i.e., in-

clude roughly the same number of faces as non-faces in the dataset).

Namely, we are saying that within a single class the unobserved

latent variables should also be balanced. This would promote the

notion that all instances of a single class will be treated fairly by

the classifier such that even if a latent variable was changed to the

opposite extreme (e.g., skin tone from light to dark) the accuracy

of the classifier would not be changed.

Furthermore, given a labeled test set across the space of sensitive

latent variables, z, we can measure the bias of the classifier by

computing its accuracy across each of the sensitive categories (e.g.

skin tone). While the overall accuracy of the classifier is the mean

accuracy over all sensitive categories, the bias is the variance in

accuracies across all realizations of these categories (e.g., light vs.

dark faces). For example, if a classifier performs equally well no

matter the realization of a specific latent variable (e.g., skin tone),

it will have zero variance in accuracy, and thus be called unbiased

with respect to that variable. On the other hand, if some realizations

of the latent variable cause the classifier to perform better or worse,

the variance in the accuracies will increase, and thus, the overall

bias of the classifier will also increase.

While it is possible to use a set of human defined sensitive vari-

ables to ensure fair representation during training, this requires

time intensive manual annotation of each variable over the entire

dataset. Additionally, this approach is subject to potential human

bias in the selection of which variables are deemed sensitive or not.

In this work, we address this problem by learning the latent vari-

ables of the class in an entirely unsupervised manner and proceed

to use these learned variables to adaptively resample the dataset

while training. In the following subsection, we will outline the

architecture used to learn the latent variables.

3.2 Learning Latent Structure with Variational
Autoencoders

In this work, we learn the latent variables of a class in an entirely un-
supervised manner and proceed to use these to adaptively resample

the dataset while training. To accomplish this, we propose an ex-

tension of the variational autoencoder (VAE) network architecture:

a debiasing-VAE (DB-VAE). The encoder portion of the VAE learns

an approximation qϕ (z |x) of the true distribution of the latent vari-

ables given a data point. As opposed to classical VAE architectures,

we also introduce d additional output variables where ŷ ∈ Rd . With

k latent variables and d output variables, the encoder outputs 2k+d

Update positive 
debiasing probabilities

pθ (x | z)qφ (z | x)

z0

̂x x~

Note: 
indicates gradients are 
blocked when y=0

Classification Network

Data Input
Encoder Decoder

Reconstruction

{z}1
k-1

La
te

nt

Figure 2: Debiasing Variational Autoencoder. Architecture
of the semi-supervised DB-VAE for binary classification
(blue region). The unsupervised latent variables are used to
adaptively resample the dataset while training.

activations corresponding to µ ∈ Rk , Σ = Diaд[σ 2] ≻ 0, which are

used to define the distribution of z, and the d-dimensional output,

ŷ.
Note that, in order to still learn our original supervised learning

task we assign and explicitly supervise the d output variables. In

turn, this transforms our traditional VAE model from an entirely

unsupervised model to a semi-supervsied model, where some latent

variables are implicitly learned by trying to reconstruct the input

and the others are explicitly supervised for a specific task (e.g.

classification). For example, if we originally wanted to train a binary

classifier (i.e., ŷ ∈ {0, 1}), our DB-VAE model would learn a latent

encoding of k latent variables (i.e., {zi }i ∈{1,k }) as well as a single
variable specifically for classification: z0 = ŷ.

A decoder network mirroring the encoder is then used to re-

construct the input back from the latent space by approximating

pθ (x |z). VAEs utilize reparameterization to differentiate the out-

puts through a sampling step, where we sample ϵ ∼ N(0, (I )) and

compute z = µ(x)+Σ
1

2 (x) ◦ϵ . This decoded reconstruction enables

unsupervised learning of the latent variables during training, and is

thus necessary for automated debiasing of the data during training.

We train the network end-to-end using backpropagation with a

three component loss function comprised of a supervised latent loss,

a reconstruction loss, and a latent loss for the unsupervised vari-

ables. For a binary classification task, for example, the supervised

loss Ly (y, ŷ) is given by the cross-entropy loss; the reconstruc-

tion loss Lx (x , x̂) is given by the Lp norm between the input and

the reconstructed output; and the latent loss LKL(µ,σ ) is given
by the Kullback-Liebler (KL) divergence. Finally, the total loss is a
weighted combination of these three losses:

LTOTAL = c1

[ ∑
i ∈{0,1}

yi log

(
1

ŷi

) ]
︸                      ︷︷                      ︸

Ly (y,ŷ)

+c2

[
∥x − x̂ ∥p

]
︸         ︷︷         ︸
Lx (x, x̂ )

+ c3

[
1

2

k−1∑
j=0
(σj + µ

2

j − 1 − log(σj ))

]
︸                                  ︷︷                                  ︸

LKL (µ,σ )

(2)

where c1, c2, c3 are the weighting coefficients to impact the relative

importance of each of the individual loss functions. For comparison,
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the baseline model used for the desired task has a similar archi-

tecture as the DB-VAE, without the unsupervised latent variables

and decoder network, and would be trained according to only the

supervised loss function.

Note that special care needs to be taken when feeding training

examples from classes which you do not want to debias. For ex-

ample, in the facial detection problem, we primarily care about

ensuring that our positive dataset of faces is fair and unbiased,

and less about debiasing negative examples where there is no face

present. For these negative samples, the gradients from the decoder

and latent space should be stopped and not backpropogated. This

effectively means that, for these classes, we only train the encoder

to optimize the supervised loss.

3.3 Algorithm for Automated Debiasing
In this section, we present the algorithm for adaptive resampling

of the training data based on the latent structure learned by our

DB-VAE model. By dropping over-represented regions of the latent

space according to their frequency of occurrence, we increase the

probability of selecting rarer data for training. This is done adap-

tively as the latent variables themselves are being learned during

training. Thus, our debiasing approach accounts for the complete

distribution of the underlying features in the training data.

The training dataset is fed through the encoder network, which

provides an estimate Q(z |X ) of the latent distribution. We seek to

increase the relative frequency of rare data points by increased

sampling of under-represented regions of the latent space. To do

so, we approximate the distribution of the latent space with a his-

togram
ˆQ(z |X ) with dimensionality defined by the number of la-

tent variables, k . To circumvent the high-dimensionality of the

histogram when the latent space becomes increasingly complex,

we simplify further and use independent histograms to approxi-

mate the joint distribution. Specifically, we define an independent

histogram,
ˆQi (zi |X ), for each latent variable zi :

ˆQ(z |X ) ∝
∏
i

ˆQi (zi |X ) (3)

This allows us to neatly approximateQ(z |X ) based on the frequency
distribution of each of the learned latent variables. Finally, we

introduce a single parameter, α , to tune the degree of debiasing

introduced during training. We define the probability distribution

of selecting a datapoint x asW(z(x)|X ), parameterized by the

debiasing parameter α :

W(z(x)|X ) ∝
∏
i

1

ˆQi (zi (x)|X ) + α
(4)

We provide pseudocode for training the DB-VAE in Algorithm 1.

At every epoch all inputs x from the original dataset X are prop-

agated through the model to evaluate the corresponding latent

variables z(x). The histograms Q̂i (zi (x)|X ) are updated accordingly.
During training, a new batch is drawn by keeping inputs, x , from
the original dataset, X , with likelihoodW (z(x)|X ). Training on the

debiased data batch now forces the classifier into a choice of param-

eters that work better in rare cases without strong deterioration of

performance for common training examples. Most importantly, the

debiasing is not manually specified beforehand but instead based

on learned latent variables.

Algorithm 1 Adaptive re-sampling for automated debiasing of the

DB-VAE architecture

Require: Training data {X ,Y }, batch size b
1: Initialize weights {ϕ,θ }
2: for each epoch, Et do
3: Sample z ∼ qϕ (z |X )

4: Update
ˆQi (zi (x)|X )

5: W(z(x)|X ) ←
∏

i
1

ˆQi (zi (x ) |X )+α
6: while iter < n

b do
7: Sample xbatch ∼ W(z(x)|X )
8: L(ϕ,θ ) ← 1

b
∑
i ∈xbatch Li (ϕ,θ )

9: Update: [w ← w − η∇ϕ,θL(ϕ,θ )]w ∈{ϕ,θ }
10: end while
11: end for

Intuitively, we can think of the parameter α as tuning the de-

gree of debiasing. As α → 0, the subsampled training set will tend

towards uniform over the latent variables z. As α → ∞, the sub-
sampled training set will tend towards a random uniform sample

of the original training dataset (i.e., no debiasing).

4 EXPERIMENTS
To validate our debiasing algorithm on a real-world problem with

significant social impact, we learn a debiased facial detector using

potentially biased training data. Here we define the facial detection

problem, describe the datasets used, and outline model training,

debiasing, and evaluation.

For the facial detection problem, we are given a set of paired

training data samples Dtrain = {(x (i),y(i))}ni=1, where x (i) are

the raw pixel values of an image patch and y(i) ∈ {0, 1} are their
respective labels, indicating the presence of a face. Our goal is

to ensure that the set of positive examples used to train a facial

detection classifier is fair and unbiased. The positive training data

may potentially be biased with respect to certain attributes such

as skin tone, in that particular instances of those attributes may

appear more or less frequently than other instances. Thus, in our

experiments, we train a full DB-VAE model to learn the latent

structure underlying the positive (face) images and use the adaptive

resampling approach outlined in Algorithm 1 to debias the model

with respect to facial features. For negative examples, we only

train the encoder portion of our network, as described in Section 3.

We evaluate the performance of our debiased models relative to

standard, biased classifiers on the PPB dataset and provide estimates

of the precision and bias of each model as performance metrics.

4.1 Datasets
We train our classifiers on a dataset ofn = 4×105 images, consisting

of 2 × 105 positive (images of faces) and negative (images of non-

faces) examples, split 80% and 20% into training and validation sets,

respectively. Positive examples were taken from the CelebA dataset

[21] and cropped to a square based on the annotated face bounding

box. Negative examples were taken from the ImageNet dataset [13],

from a wide variety of non-human categories. All images were

resized to 64 × 64.
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Figure 3: Loss evolution and validation accuracy. Conver-
gence of the total loss on the training set (left) and classifi-
cation accuracy on the validation set (right) for models with
varying degrees of debiasing.

After training, we evaluate our debiasing algorithm on the PPB

test dataset [9], which consists of images of 1270 male and female

parliamentarians from various African and European countries.

Images are consistent in pose, illumination, and facial expression,

and the dataset exhibits parity in both skin tone and gender. The

gender of each face is annotated with the sex-based “Male” and

“Female” labels. Skin tone annotations are based on the Fitzpatrick

skin type classification system [15], with each image labeled as

“Lighter” or “Darker”.

4.2 Training the Models
For the classical facial detection task, we train a convolutional

neural network with four sequential convolutional layers (5 × 5

filters with 2 × 2 strides) for feature extraction. Final classification

is done with an additional two fully connected layers with 1000

and 1 hidden neurons in each layer respectively. All layers in the

network use ReLU activation and batch normalization [17]. Our

DB-VAE architecture shares this same classification network for

the encoder, except for the final fully connected layer which now

outputs an additional k latent variables for a total of 2k + 1 activa-
tions. A decoder, which mirrors the encoder with 2 fully connected

layers and 4 de-convolutional layers, is then used to reconstruct

the original input image. We train our models by minimizing the

empirical training loss as defined in Eq. 2 with L2 reconstruction
loss.

In our experiments, we additionally block all gradients from the

decoder network wheny = 0, i.e., for negative examples, as we only

want to debias for positive face examples. In addition to training

the standard classification network with no debiasing, we trained

DB-VAE models with varying degrees of debiasing, defined by the

parameter α , for 50 epochs and evaluated their performance on the

validation set. Models were re-trained from scratch 5 times each

for added statistical robustness of results.

4.3 Automated Debiasing of Facial Detection
Systems

We explore the output of the debiasing algorithm and provide ex-

tensive evaluation of our learned models on the PPB dataset. We

consider the resampling probabilities,W(z(x)|X ), that arise from
learning a debiased model. As shown in Fig. 4A, as the probability

of resampling increases, the number of data points within the cor-

responding bin decreases, suggesting that those images more likely

to be resampled are those characterized by ‘rare’ features.

Indeed, as the probability of resampling increases, the corre-

sponding images become more diverse, as evidenced by the four

sample faces from each frequency bin in Fig. 4A. This observation

is further validated by considering the ten faces in the training

data with the lowest and highest resampling probabilities (Fig. 4B,C

respectively). The ten faces with the lowest resampling probability

appear quite uniform, with consistent skin tone, hair color, forward

gaze, and background color. In contrast, the ten faces with the high-

est resampling probability display rarer features such as headwear

or eyewear, tilted gaze, shadowing, and darker skin. Taken together,

these results imply that our algorithm identifies and then actively

resamples those data points with rarer, more diverse features based

on a learned latent representation.

We observed that the DB-VAE is able to learn facial features

such as skin tone, presence of hair, and azimuth, as well as other

features such as gender and age by slowly perturbing the value

of a single latent variable and and feeding the resulting encoding

through the decoder (Fig. 5A). This supports the hypothesis that

our DB-VAE algorithm is capable of debiasing against such features

since the resampling probabilities are directly defined based on

the probability distributions of individual learned latent variables

(Alg. 1).

To evaluate the performance of our debiasing approach, we uti-

lized classification accuracy (positive predictive value) as a metric,

and tested our models on the PPB dataset. For this evaluation,

we extracted patches from each image using sliding windows of

varying dimension, and fed these extracted image patches to our

trained models. We output a positive match of a face if the classifier

identifies a face in any one of the subpatches within the image.

To demonstrate debiasing against specific latent features, we

quantified classification performance on individual demograph-

ics. Specifically, we considered skin tone (light/dark) and gender

1
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Figure 4: Sampling probabilities over the training dataset.
Histogram over resampling probabilities showing four sam-
ples from each bin (A). The top ten faces with the lowest (B)
and highest (C) probabilities of being sampled.
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Figure 5: Increased performance and decreased categorical bias with DB-VAE. The model learns latent features such as skin
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(male/female). We denoteA as the set of classification accuracies

of a model on each of the four intersectional classes. We compared

the accuracy of models trained with and without debiasing on both

individual demographics (race/gender) and the PPB dataset as a

whole, and provide results on the effect of the debiasing parameter

α on performance (Fig. 5). Recall that no debiasing corresponds

to the limit α → ∞, where we uniformly sample over the origi-
nal training set without learning the latent variables. Conversely,
α → 0, corresponds to sampling from a uniform distribution over

the latent space. Error bars (standard error of the mean) are pro-

vided to visualize statistical significance of differences between the

trained models.

As shown in Fig. 5, greater debiasing power (decreasing α ) sig-
nificantly increased classification accuracy on “Dark Male" subjects,

consistent with the hypothesis that adaptive resampling of rare

instances (e.g., dark faces) in the training data results in less algo-

rithmic discrimination. This suggests that our algorithm can debias

for a qualitative feature like skin tone, which has significant social

implications for its utility in improving fairness in facial detection

systems.

In contrast to the trend observed with dark male faces, the clas-

sification accuracy on “Light Male" faces remained nearly constant

for both the biased and debiased models. Additionally, the accuracy

on light male subjects was higher than the three other groups, con-

sistent with [9]. This suggests that our debiasing algorithm does

not sacrifice performance on categories which already have high

precision. Importantly, the high, near constant accuracy suggests

that an arbitrary classification model trained on the CelebA dataset

may be biased towards light male subjects, and further supports

the need for approaches that seek to reduce such biases.

Table 1: Accuracy and bias on PPB test dataset.

E[A]
(Precision)

Var [A]
(Measure of Bias)

No Debiasing 95.13 28.84

α = 0.1 95.84 25.43

α = 0.05 96.47 18.08

α = 0.01 97.13 9.49

α = 0.001 97.36 9.43

Although the DB-VAE improved accuracy on dark males signif-

icantly, it never reached the accuracy of light males. Despite the

fact that we debias our training data with respect to latent variables

such as skin tone, there are inherently fewer examples of dark male

faces in our data. Our model is simply limited by infrequency of

these examples but we note that increasing the overall size of our

training dataset may further mitigate this effect.

We summarize the key trends in overall performance with DB-

VAE in Table 1. As confirmed by Fig. 5, the overall precision, E[A],
increased with increased debiasing power (decreasing α ). Addition-
ally, we observed a decrease in the variance in accuracy between

categories, indicative of decreased bias with greater debiasing. To-

gether, these results suggest effective debiasing with DB-VAE.

5 CONCLUSION
In this paper, we propose a novel, tunable debiasing algorithm

to adjust the respective sampling probabilities of individual data

points while training. By learning the underlying latent variables

in an entirely unsupervised manner, we can scale our approach

to large datasets and debias for latent features without ever hand

labeling them in our training set.

We apply our approach to facial detection to promote algorith-

mic fairness by reducing hidden biases within training data. Given a

biased training dataset, our debiased models show increased classifi-

cation accuracy and decreased categorical bias across race and gen-

der, compared to standard classifiers. Finally, we provide a concrete

algorithm for debiasing as well as an open source implementation

of our model.

The development and deployment of fair and unbiased AI sys-

tems is crucial to prevent unintended discrimination and to ensure

the long-term acceptance of these algorithms. We envision that

the proposed approach will serve as an additional tool to promote

systematic, algorithmic fairness of modern AI systems.
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