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Google Research

18 offices, 11 countries o



1 Google Al

Qr Approach

e Foundational research

e Building tools to enable research & democratize Al/ML

e Al-enabling Google products



(2}
6
o o)
o &
S
(<)

» o) /i
Lanifh‘ghte’lr\B‘re.wmgso

# s
_fCentral 0\ /H Man
{ / LR

useum'

Flo v;Bak‘egy.
PR x
Massachusetts lqsmute/
> 4

R gf Te‘chnology

niversity Bridge

X »
prrow prs iy
Boston . 1 i Storrow/Dr ==

. . -
U"'Ve’,sv")" - KenmoreSquare

_ -
e
\

l-v.‘.
Q Café‘dﬁays
7/

Biogen {

£ 6 min
0.3 miles

,Toscanlrrs Ice CreamE

—~ ﬁ,.";,mﬂ

9 Pharmaceutlcals Inc
"« .

"';'%'J ¥ / The
_/ Collect

m
_‘, o BroadCanaI
e D%l
MIT Samberg} = Long fellow: Bridge N

=2 )\’(Conference Center

MIT Medial‘ab*

W Feb27-Feb28

éWalker, Memorlal
Feb 27.9:00ami g

=

<
e
C\\ar\eﬁ

Charles
River Basin

Muddylgjver S\'@“O
- 8es®
3\

ay o AR
W\

Hatch Memorial Shell &

s £ NS Copleyi _
| B.ACK B<A 25 @\T

deep learning mit

(D3 YouTube

Introduction to Deep Learning
MIT 6.S191

Alexander Amini
January 28,2019

MIT 6.5191: Introduction to Deep Learning

IR ToDesrLeansena.cot




What's our goal?

Do for olfaction what machine learning has already done for vision and
hearing.

To digitize the sense of smell, and make the world's smells and
flavors searchable. Every flower patch, every natural gas leak, every
item on every menu in every restaurant.

We're starting at the very beginning, with the simplest problem..
but first, some olfaction facts!



Most airflow is not smelled. Passes right
on through the lower turbinates to your
lungs.

The OSNs are one of two parts of your
brain that are exposed to the world (the
other is the pituitary gland, and that’s in
blood, so only half-counts).

Taste lives on your tongue. Flavor is
both taste and retronasal olfaction, from
a “chimney effect”.




GPCR: G-protein coupled receptor
OR: GPCR Olfactory Receptor
OSN: Olfactory sensory neuron

~400 ORs expressed in humans (as
opposed to 3 types of cones)
~1000 in mice. ~2000 in elephants!

One OR per OSN.

ORs comprise 2% of your genome,
but many are pseudogenes.

OR structure is unknown, they are
uncrystallized. Further, only ~40
expressed in cell lines.

Their ligand responses are broadly
tuned, but many ORs (22/400) are still
orphans, with no known ligand.

“._ tract
* Olfactory bulb

Olfactory ,
epithelium .*

Nasal
vestibule

Olfactory
cleft

Olfactory cell
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People do smell different things!

SNPs in single ORs result in sensory dimorphisms. The most famous
ones are:

e OR7D4 T113M: normally funky beta-androstenone (boar taint)
is rendered pleasant.

e ORb5A1 N183D: nearly completely Mendelian. Carriers of the
mutation can detect beta-ionine at two orders of magnitude
lower concentration

e Olfactory sensory dimorphisms are likely common — humans
differ functionally at 30% of OR alleles.

e ~4.5% of the world is colorblind (CBA)

13% in the US has selective hearing loss (NIDCD)

e All this to argue — smell is not defacto finicky or illogical.

Right now, we're starting with the simplest problem

Mainland et al 2015


http://www.colourblindawareness.org/colour-blindness/
https://www.nidcd.nih.gov/health/statistics/quick-statistics-hearing

“Smells sweet, with a hint of
vanilla, some notes of creamy and
back note of chocolate.”

citrus creamy
Predict sweet baked spicy
> odorless

clean musky beefy

chocolate fruity

Odor
descriptors



And why is this hard?
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We built a benchmark from perfumery raw materials
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We built a benchmark from perfumery raw materials

1000 - Vanilli
anillin
< ==
1. sweet, vanilla, creamy, chocolate
800 2. sweet, vanilla, creamy, phenolic
General agreement between repeated
600 - ratings. All ratings by perfume experts.
)
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|
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O 400-
200
(o=

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Labels per molecule



We built a benchmark from perfumery raw materials

60 -

solvent
40 4 orangeflower
bready
black currant

radish

green _
woody floral sweet fruity

30 500 1000 1500 1844
Molecules per label




We built a benchmark from perfumery raw materials

odors

odors

.| Clean (pine, lemon, mint)
1y Toasiedy Baked:(cocoa; cof&ee, popcorn)

Ll B
2 . +: | Alcohol.(rum, cognac, mali)
- Spice (cinnamon)

i C

i Savory (onion, beef)

Fresh fruit'(apple, pineapple)

Dairy (cheese, milk)




Ohloff’s rule

. . aa : . , oror
HIStOFICa| SOR approaches anroxlr;ongr;]orerc;;gs;Zlam ergris
Pen & Paper Buchbauer’s santalols

Boelens’ synthetic muguet
Kraft’s vetiver rule

/
O
{ N
§
(-)-khusimone 4,7,7-Trimethyl-1-methylidene 1,7-cyclggermacra-1
spiro[4.5]decan-2-one (10),4-dien-15-al

Fig 3.22 Scent and Chemistry (Ohloff, Pickenhagen, Kraft)

Rule-based principles for predicting odor. There are as many exceptions as there are rules.



Traditional Computational Approaches

Predict e Toxicity

> e Solubility
e Photovoltaic

OH B efficiency (solar cell)
e Chemical potential
/ k- (batteries)
0 4 ¢

“bag of sub-graphs” representation
AKA molecular fingerprints
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Output

“lion”

“How cold is it

outside?”
how are | “YIR4F, «]ﬂl?ﬂ%" "

you?”

“A blue and yellow train
travelling down the tracks”
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Graphs as input to neural networks: not just images,

sounds or words

Convolutional Networks on Graphs
for Learning Molecular Fingerprints

Neural Message Passing for Quantum Chemistry

David Duvenaud', Dougal Maclaurin', Jorge Aguilera-Iparraguirre
Rafael Gomez-Bombarelli, Timothy Hirzel, Alin Aspuru-Guzik, Ryan P. Adams
Harvard University

Abstract

We introduce a convolutional neural network that operates directly on graphs.
These networks allow end-to-end learning of prediction pipelines whose inputs
are graphs of arbitrary size and shape. The architecture we present generalizes
standard molecular feature extraction methods based on circular fingerprints. We
show that these data-driven features are more interpretable, and have better pre-
dictive performance on a variety of tasks.

Justin Gilmer! Samuel S. Schoenholz' Patrick F. Riley? Oriol Vinyals® George E. Dahl'

Abstract

Supervised learning on molecules has incredi-
ble potential to be useful in chemistry, drug dis-
covery, and materials science. Luckily, sev-
eral promising and closely related neural network
models invariant to molecular symmetries have
already been described in the literature. These
models learn a message passing algorithm and
aggregation procedure to compute a function of
their entire input graph. At this point, the next
step is to find a particularly effective variant of

Targets

DFT
~ 103 seconds |E,wp, -

Message Passing Neural Net
-
AENEA C¢ Qj’
TN\ R N/

~ 10~2 seconds




Inside a GNN
Converting a molecule to a graph

Molecule (e.g., vanillin)




Inside a GNN
Propagating information & transforming a graph

Foreach () :
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And how well can we predict?
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A representation optimized for odor

citrus creamy sweet baked spicy odorless
lla clean alcoholic beefy chocolate fruity
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Exploring the geometric space of odor

- T .Cabbage

GNN Embedding PC 2
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2 1 0 1

GNN Embedding PC 1



Exploring the geometric space of odor

GNN Embedding PC 2
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What do nearby molecules look like?

Inspired by word embeddings. Are there “molecular synonyms”™?

First, what do "nearest neighbors” look like if you use
just structure, and ignore our neural network?

Then, what do nearest neighbors look like to our GCN?



Molecular neighbors: using structure

berry, H medicinal,
medicinal, /K( g sweet, fruity,
fruity, floral
phenolic

ortho-cresyl lsobutyrate ortho-cresyl acetate

O%

dihydrocoumarin

herbal, nutty, coconut, coumarinic,
cinnamon, sweet, hay, tobacco

(o)

spicy
/_-o (|3| smoky,

spicy,
o o balsamic
ethyl 3-(2-hydroxyphenyl) sweet
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Molecular neighbors: using GCN features

0 phenolic, hay,
\\ lactonic,

o)
green, Oy coconut,
coumarinic 0 coumarinic,
(o} \ almond, sweet,
1,4-benzodioxin-2(3H)-one

phthalide  powdery

O%

dihydrocoumarin

herbal, nutty, coconut, coumarinic
cinnamon, sweet, hay, tobacco

\ . o sweet,
L N nutty,
2-benzofuran
. o) sweet,
m coumarinic. carboxaldehyde
= hay
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coumarin

green,

vanilla,

nutty,
coumarinic, 0 Yo

spicy
coumane



Do these representations generalize?

Using a learned model to make predictions on a new task is ‘transfer learning’

You might hear ‘fine-tuning’ referred to as a strategy for
transfer learning’.

Transfer learning in chemistry, today, rarely works. Do our
embeddings transfer learn to other tasks?



Do these representations generalize?

WHEN A USER TAKES A PHOTO,
THE APP SHOULD CHECK UHETHER
THEY'RE IN' A NATIONAL PARK...

SURE, ERSY GIS LOOKUR
GIWEAFEUHQRS.

PARK or BRD
. AND CHECK WHETHER ‘:;%: >
TPEPHOTO 15 OF A BIRD.

ILLNEDAESEN?(J’I

0

INCS, IT CAN BE HARD TO EXPLAIN
THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.




DREAM Oilfactory Challenge
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But why is the neural network making these predictions?

Toy test example: classify whether a molecule has benzene. Which atoms contribute to predictions?

Benzene?

This is just one task of potentially hundreds, of varying complexity.



But why is the neural network making these predictions?

Toy test example: classify whether a molecule has benzene. Which atoms contribute to predictions?

| —
not-positive effect positive effect
Local weights




But why is the neural network making these predictions?

Toy test example: classify whether a molecule has benzene. Which atoms contribute to predictions?

not-positi've effect positive effect
Local weights

Positive examples Q
»* }NHz ‘ Q M’\ :

Negative examples

, c T«
HO ’( OH 0 Cl
0
al Cl
R Cl
Cl

0




But why is the neural network making these predictions?
Odor percept — “garlic’

negative effect positive effect
Local weights

Positive examples

Negative examples




But why is the neural network making these predictions?
Odor percept — “fatty”

negative effect positive effect
Local weights

Positive examples

Negative examples




But why is the neural network making these predictions?
Odor percept — “vanilla”

negative effect positive effect
Local weights

Positive examples

C H>: ) PP

Negative examples




But why is the neural network making these predictions?
Odor percept — “winey"

negative effect positive effect
Local weights

Positive examples

Negative examples
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Future Directions

Collecting interest & those interested in collaborating.

e Test ML-driven molecular design for
humans in a safe context.

e Build bedrock understanding in

single-molecules before working on Benjamin Sanchez-Lengeling

odor mixtures Brian Lee
Carey Radebaugh
e Build a foundational dataset for the ML Emily Reif
on molecules community. Jennifer Wei

Alex Wiltschko




