

Limitations and New Frontiers

Ava Soleimany MIT 6.S191 January 29, 2020

T-shirts! Today!

Lecture Schedule

Intro to Deep Learning

Lecture 1 [Slides] [Video] coming soon!

Deep Computer Vision

Lecture 3 [Slides] [Video] coming soon!

Deep Reinforcement Learning

Lecture 5 [Slides] [Video] coming soon!

Guest Lecture

Lecture 7 [Info] [Slides] [Video] coming soon!

Neural Rendering

Lecture 9 [Info] [Slides] [Video] coming soon!

Deep Sequence Modeling

Lecture 2 [Slides] [Video] coming soon!

Deep Generative Modeling

Lecture 4 [Slides] [Video] coming soon!

Limitations and New Frontiers

Lecture 6 [Slides] [Video] coming soon!

Robot Learning

Lecture 8 [Info] [Slides] [Video] coming soon!

ML for Scent

Lecture 10 [Info] [Slides] [Video] coming soon!

Intro to Tensorflow; **Music Generation**

Lab Session 1 [Code] coming soon!

De-biasing Facial Recognition Systems

Lab Session 2 [Code] [Paper] coming soon!

Pixels-to-Control Learning

Lab Session 3 [Code] coming soon!

Final Projects

Lab Session 4 [Video] coming soon!

Final Projects and **Awards Ceremony**

Lab Session 5 [Video] coming soon!

- Mon Jan 27 Fri Jan 3 I
- \bullet 1:00 pm 4:00pm, 32-123
- Lecture + Lab Breakdown
- Graded P/D/F; 3 Units
- I Final Assignment
- Lab submissions: Thursday 1/30, 5pm

Final Class Project

Option I: Proposal Presentation

- At least 1 registered student to be prize eligible
- Present a novel deep learning research idea or application
- 3 minutes (strict)
- Presentations on Friday, Jan 31
- Submit groups by Wednesday I 1:59pm to be eligible
- Submit slide by Thursday I 1:59pm to be eligible
- Instructions: shorturl.at/wxBK7

- Judged by a panel of judges
- Top winners are awarded:

3x NVIDIA 2080 Ti (\$4000)

4x Google Home (\$400)

3x Display Monitors (\$300)

3x SSD 1TB (\$200)

Final Class Project

Option I: Proposal Presentation

- At least 1+ registered student to be prize eligible
- Present a novel deep learning research idea or application
- 3 minutes (strict)
- Presentations on Friday, Jan 31
- Submit groups by Wednesday
 II:59pm to be eligible
- Submit slide by Thursday
 I 1:59pm to be eligible
- Instructions: shorturl.at/wxBK7

Proposal Logistics

- Prepare slides on Google Slides
- Group submit by today 11:59pm: shorturl.at/mxBWZ
- In class project work: Thu, Jan 30
- Slide submit by Thu 11:59 pm:
- shorturl.at/pqCL9
- Presentations on Friday, Jan 3 I

Final Class Project

Option I: Proposal Presentation

- At least 1+ registered student to be prize eligible
- Present a novel deep learning research idea or application
- 3 minutes (strict)
- Presentations on Friday, Jan 31
- Submit groups by Wednesday 1:59pm to be eligible
- Submit slide by Thursday 1:59pm to be eligible
- Instructions: shorturl.at/wxBK7

Option 2: Write a 1-page review of a deep learning paper

- Grade is based on clarity of writing and technical communication of main ideas
- Due Friday Jan 3 I 1:00pm (before lecture) by email

Thursday: Al for Human Creativity + Robot Learning

David Cox, IBM Director, MIT-IBM Watson Al Lab Towards Robust Al

Animesh Garg, U Toronto, NVIDIA Robot Learning

Lab + Final Project Work

Ask us questions!

Open office hours!

Work with group members!

Friday: Neural Rendering + Learning to Smell Project Proposals + Awards!

Chuan Li, CSO, Lambda Labs Neural Rendering

Alex Wiltschko,
Senior Research Scientist,
Google Brain
Machine Learning for Scent

Project Proposals!

Judging and Awards!

Pizza Celebration!

So far in 6.8191...

'Deep Voice' Software Can Clone Anyone's Voice With Just 3.7 Seconds of Audio

Using snippets of voices, Baidu's 'Deep Voice'

can generate new speech, accents, and tones.

'Creative' AlphaZero leads way for chess computers and, maybe, science

sees of computer that could be used to find cures for diseases

The Rise of Deep Learning

Let There Be Sight: How Deep Learning Is Helping the Blind 'See'

on, raked Data

SELF DRIVING STARTUR

ANUMEY 24, 2019

:hnology outpacing security ures

Facial Recognition | Features and Intendews

Neural networks everywhere

Wed, 01/16/2003 - 8:00am - 1 Comment: By Kenny Walter - Digital Reporter - 1 (PlandDHagazine

AI beats docs in cancer spottin

A new study provides a fresh example of machine learning as an importa diagnostic tool. Paul Biegler reports.

Al Can Help In Predicting Cryptocurrency

Value

sile on the right aren't real; they're the product of machine learning

shorts body in smatchones in ever

parent company Alphabet, is

Automation And Algorithms:

De-Risking Manufacturing With Artificial Intelligence

Sarah Goehrke Contributor () Jocus on the industrialisation of additive manufacturing.

The two key applications of AI in manufacturing are pricing and manufacturability feedback

By Robert F. Service | Dec. 6, 2018 , 12:05 PM

sounds using video scenes

Secure States - Security St. Std. Street - St. Mt. Mill.

Researchers introduce a deep learning method

that converts mono audio recordings into 3D

So far in 6.5191...

So far in 6.5191...

- Prediction
- Detection
- Action

. . .

Signals

Images

. . .

So far in 6.5191...

- Prediction
- Detection
- Action

. . .

. . .

Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.

Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.

Artificial Intelligence "Hype": Historical Perspective

Limitations

dog

banana

dog

tree

Capacity of Deep Neural Networks

Capacity of Deep Neural Networks

Capacity of Deep Neural Networks

Neural networks are **excellent** function approximators ...when they have training data

Original image Temple (97%)

Perturbations

Adversarial example
Ostrich (98%)

Original image
Temple (97%)

Perturbations

Adversarial example
Ostrich (98%)

Remember:

We train our networks with gradient descent

$$W \leftarrow W - \eta \frac{\partial J(W, x, y)}{\partial W}$$

"How does a small change in weights decrease our loss"

Remember:

We train our networks with gradient descent

$$W \leftarrow W - \eta \frac{\partial J(W, x, y)}{\partial W}$$

"How does a small change in weights decrease our loss"

Remember:

We train our networks with gradient descent

$$W \leftarrow W - \eta \frac{\partial J(W, x, y)}{\partial W}$$
 Fix your image x , and true label y

"How does a small change in weights decrease our loss"

Adversarial Image:

Modify image to increase error

$$x \leftarrow x + \eta \frac{\partial J(W, x, y)}{\partial x}$$

"How does a small change in the input increase our loss"

Adversarial Attacks on Neural Networks

Adversarial Image:

Modify image to increase error

$$x \leftarrow x + \eta \frac{\partial J(W, x, y)}{\partial x}$$

"How does a small change in the input increase our loss"

Adversarial Attacks on Neural Networks

Adversarial Image:

Modify image to increase error

$$x \leftarrow x + \eta \frac{\partial J(W, x, y)}{\partial x}$$
 Fix your weights θ , and true label y

"How does a small change in the input increase our loss"

Synthesizing Robust Adversarial Examples

Neural Network Limitations...

- Very data hungry (eg. often millions of examples)
- Computationally intensive to train and deploy (tractably requires GPUs)
- Easily fooled by adversarial examples
- Can be subject to algorithmic bias
- Difficult to encode structure and prior knowledge during learning
- Poor at representing uncertainty (how do you know what the model knows?)
- Uninterpretable black boxes, difficult to trust
- Finicky to optimize: non-convex, choice of architecture, learning parameters
- Often require expert knowledge to design, fine tune architectures

Neural Network Limitations...

- Very data hungry (eg. often millions of examples)
- Computationally intensive to train and deploy (tractably requires GPUs)
- Easily fooled by adversarial examples
- Can be subject to algorithmic bias
- Difficult to encode structure and prior knowledge during learning
- Poor at representing uncertainty (how do you know what the model knows?)
- Uninterpretable black boxes, difficult to trust
- Finicky to optimize: non-convex, choice of architecture, learning parameters
- Often require expert knowledge to design, fine tune architectures

New Frontiers 1: Encoding Structure into Deep Learning

CNNs: Using Spatial Structure

- 1) Apply a set of weights to extract local features
- 2) Use multiple filters to extract different features
 - 3) Spatially share parameters of each filter

Graphs as a Structure for Representing Data

State Machines

Biological Networks

Social Networks

Molecules

Mobility & Transport

Convolutional Networks

Convolutional Networks

Convolutional Networks

Convolutional Networks

Convolutional Networks

Convolutional Networks

Convolutional Networks

Convolutional Networks

Convolutional Networks

Convolutional Networks

Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)

Friday: Graph neural networks for odor prediction Alex Wiltschko, Google Brain

Learning From 3D Data

Point clouds are unordered sets with spatial dependence between points

Part Segmentation

Semantic Segmentation

Extending Graph CNNs to Pointclouds

Capture local geometric features of point clouds while maintaining order invariance

New Frontiers II: Uncertainty Estimation & Bayesian Deep Learning

Why care about uncertainty?

Why care about uncertainty?

We need uncertainty metrics to assess the network's confidence in its predictions.

Remember: P(cat) + P(dog) = 1

Bayesian Deep Learning for Uncertainty

Network tries to learn output, Y, directly from raw data, X

Find mapping, f , parameterized by weights $oldsymbol{W}$ such that

$$\min \mathcal{L}(Y, f(X; W))$$

Bayesian neural networks aim to learn a posterior over weights, P(W|X,Y):

$$P(W|X,Y) = \frac{P(Y|X,W)P(W)}{P(Y|X)}$$

Bayesian Deep Learning for Uncertainty

Network tries to learn output, Y, directly from raw data, X

Find mapping, f , parameterized by weights $oldsymbol{W}$ such that

$$\min \mathcal{L}(Y, f(X; W))$$

Bayesian neural networks aim to learn a posterior over weights, P(W|X,Y):

Intractable!
$$P(W|X,Y) = \frac{P(Y|X,W)P(W)}{P(Y|X)}$$

Dropout for Uncertainty

Evaluate T stochastic forward passes through the network $\{\boldsymbol{W}_t\}_{t=1}^T$

Dropout as a form of stochastic sampling $z_{w,t} \sim Bernoulli(p) \ \forall w \in W$

Model Uncertainty Application

Input Image

Predicted Depth

Model Uncertainty

Uncertainty Estimation via Ensembling

Model ensembling for estimating uncertainty

Evidential Deep Learning

Directly learn the underlying uncertainties using evidential distributions

Competing loss training:

Evidential Deep Learning

Directly learn the underlying uncertainties using evidential distributions

Competing loss training:

Robustness to adversarial perturbation

Multi-Task Learning Using Uncertainty

Multi-Task Learning Using Uncertainty

New Frontiers III: Automated Machine Learning

Motivation: Automated Machine Learning

Standard deep neural networks are optimized for a single task

Complexity of models increases

Greater need for specialized engineers

Often require expert knowledge to build an architecture for a given task

Motivation: Automated Machine Learning

Standard deep neural networks are optimized for a single task

Complexity of models increases

Greater need for specialized engineers

Often require expert knowledge to build an architecture for a given task

Build a learning algorithm that learns which model to use to solve a given problem

Motivation: Automated Machine Learning

Standard deep neural networks are optimized for a single task

Complexity of models increases

Greater need for specialized engineers

Often require expert knowledge to build an architecture for a given task

Build a learning algorithm that learns which model to use to solve a given problem

AutoML

Automated Machine Learning (AutoML)

AutoML: Model Controller

At each step, the model samples a brand new network

AutoML: The Child Network

Compute final accuracy on this dataset.

Update RNN controller based on the accuracy of the child network after training.

AutoML on the Cloud

AutoML Vision^{BETA}

Start with as little as a few dozen photographic samples, and Cloud AutoML will do the rest.

AutoML Natural Language^{BETA}

Automatically predict text categories through either single or multi-label classification.

AutoML Translation BETA

Upload translated language pairs to train your own custom model.

AutoML Spawns a Powerful Idea

- Design an Al algorithm that can build new models capable of solving a task
- Reduces the need for experienced engineers to design the networks
- Makes deep learning more accessible to the public

Connections and distinctions between artificial and human intelligence

6.5191:

Introduction to Deep Learning

Lab 3: Reinforcement Learning

Link to download labs: http://introtodeeplearning.com#schedule

- I. Open the lab in Google Colab
- 2. Start executing code blocks and filling in the #TODOs
 - 3. Need help? Find a TA or come to the front!!