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Lecture 1
(Slides) [Video) coming soon!

Lecture 3

[2lides] [Vided] coming soon!

Lecture 5
(Slides) [Video) coming soon!

Lecture 7

[ ] [3lides] [Video] coming soon!

Lecture 9
[Info] [Slides] [Video] coming soon!

I I I BB Massachusetis

I I Institute of
Technology

Lecture Schedule

Lecture 2
[Slides] [Video] coming soan!

Lecture &

[Slides] [Video] coming soon!

Lecture &6
[Slides] [Video] coming soan!

o

Lecture B

[ 1 [Slides] [Video] coming soon!

Lecture 10
| | [5lides] [Video] coming soon!

Lab Session ]
[Code) coming soon!

-

Lab Session 2

[Cade] [ | coming soon!

i -

Lab Session 3
[Code] coming soon!

s

Lab Session &

[Video] coming soon!

Lab Session 5
[Video] coming soon!
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Mon |an 2/ — Fri Jan 3|

:00 pm

L ecture +

4:.00pm, 32-123
| ab Breakdown

Graded P/D/F: 3 Units

| Final Assignment

Lab submissions: Thursday

/30, 5pm
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Final Class Project

Option |: Proposal Presentation * Judged by a panel of judges

* At least | registered student to * lop winners are awarded:
be prize eligible |

* Present a novel deep learning
research idea or application

* 3 minutes (strict)

* Presentations on Friday, Jan 31|

] 1

* Submit groups by VWWednesday
| 1:59pm to be eligible

* Submit slide by Thursday
| 1:39pm to be eligible

e Instructions: shorturl.at/wxBK7/

3x Display Monitors ($300) 3x SSD I TB ($200)
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Final Class Project

Option |: Proposal Presentation Proposal Logistics
* At least |+ registered student to * Prepare slides on Google Slides
be prize eligible * Group submit by today | |:59pm:
* Present a novel deep learning shorturl.at/mxBW?Z

research idea or application

| | * In class project work: Thu, Jan 30
* 3 minutes (strict) + Slide submit by Thu 11:59 pm:

* Presentations on Friday, Jan 31| shorturl.at/pgCL9

* Submit groups by Wednesday . Presentations on Friday, Jan 31

| 1:59pm to be eligible

* Submit slide by Thursday
| 1:39pm to be eligible

e Instructions: shorturl.at/wxBK7/
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Final Class Project

Option 2:Write a |-page review
of a deep learning paper

* (Grade I1s based on clarity of
writing and technical
communication of main ideas

* Due Friday Jan 31 1:00pm
(before lecture) by emall
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Thursday: Al for Human Creativity +
Robot Learning

David Cox,
IBM Director,
MIT-IBM Watson Al Lab

Lab + Final Project VWork
Towards Robust Al

Ask us questions.

Open office hours!

Animesh Garg,
U Toronto,

VWork with group members!

NVIDIA
Robot Learning
<2 NVIDIA.
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Friday: Neural Rendering + Learning to Smell
Project Proposals + Awards!

Chuan Li,
CSO,
Lambda Labs

Neural Rendering

Project Proposals!

Judging and Awards!

Alex Wiltschko,
Senior Research Scientist,

Google Brain
Machine Learning for Scent

Pizza Celebration!

Google
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So farin 6.S191...



‘Deep Voice’ Software

cnomemors | NE Rise of Deep Learning

Voice With Just 3.7
Seconds of Audio

Using anippats of voloes, Baldu's 'Deep Volce
can generate new speech, accents, and tones.

Lt Thare Be Sight; How Deep Learnmmg I Helping the Blind "See’

‘nnology outpacing security Aj beats docs in cancer gpottin
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‘Creative’ AlphaZero leads way for
chess computers and, maybe, science

X fac-es shnw hm'l.r fﬂr AI mmgﬂ generation has
nced in jl..lﬂ-t fﬂuryrears

How an A.l "Cat-and-Mouse Game”
Generates Believable Fake Photos
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Auto matmn And Algorit hm'-;

De-Risking Manufacturing With
Artificial Intelligence
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So farin 6.5191...

Data
* Signals
* Images
* Sensors
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So farin 6.5191...

Data Decision
* Signals * Prediction
* Images * Detection
e Sensors e Action
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So farin 6.5191...

Data Decision
* Signals * Prediction
* Images * Detection
e Sensors e Action
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Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to
an arbitrary precision, any continuous function.

S m | Massachusetis 65191 Introduction to Deep Learning .
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Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to
an arbitrary precision, any continuous function.

Caveats:

Ihe number of I'he resulting
hidden units may model may not
be infeasibly large generdlize
am i assachusefis 65191 Introduction to Deep Learning - ol Networ /
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Artificial Intelligence “Hype™: Historical Perspective

Popularity

Explosive
Growth

New Hopes

Inflated
Hype
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Limitations



Rethinking Generalization

“Understanding Deep Neural Networks Requires Rethinking Generalization®

banana
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Rethinking Generalization

“Understanding Deep Neural Networks Requires Rethinking Generalization”

banana
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Rethinking Generalization

“Understanding Deep Neural Networks Requires Rethinking Generalization”

banana

banana tree
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Rethinking Generalization

“Understanding Deep Neural Networks Requires Rethinking Generalization®

N N N N
banana dog dog
S m | Hassachuseiis 65191 Introduction to Deep Learning ,
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Capacity of Deep Neural Networks

| 00%
accuracy
0%
original randomization completely
labels | random
. Training Set Testing Set
mEm  Massachusetts 65191 Introduction to Deep Learning — -
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Capacity of Deep Neural Networks

| 00%

- || |I | I | I |I
0%

original randomization completely
labels | random
. Training Set . Testing Set
S BN  Massachuseits 65191 Introduction to Deep Learning
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Capacity of Deep Neural Networks

Modern deep networks can
perfectly fit to random data

00% — B ——— @ ——— R ———— B —— — —g@a— — — — —am — >
- |I II |I |I
0%

original randomization completely
labels random

. Training Set . Testing Set
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
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Neural Networks as Function Approximators

Neural networks are excellent function approximators

¢
S
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Neural Networks as Function Approximators

Neural networks are excellent function approximators

?
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
...when they have training data

.fﬁﬁ,ll
II|I |I B . B
| \ _—
|III
II|
II|
II|
\
\
\
\
\ How do we know when our
\ network doesn't know!
\ e
i
tttttt tTtTtitt X
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Adversarial Attacks on Neural Networks

Original image Perturbations Adversarial example
Temple (97%) Ostrich (98%)
S BN Massachusetts 65191 Introduction to Learnin - . .
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Adversarial Attacks on Neural Networks

Perturbations

65191 Introduction to Deep Learning
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Adversarial Attacks on Neural Networks

Remember:

We train our networks with gradient descent

dJ(W,x,y)

W« W —n Y

‘How does a small change in weights decrease our loss”

III'- Massachuselts 65191 Introduction to Deep Learning
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Adversarial Attacks on Neural Networks

Remember:

We train our networks with gradient descent

dJ(W,x,y)

W« W —n VY.

‘How does a small change in weights decrease our loss”
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Adversarial Attacks on Neural Networks

Remember:

We train our networks with gradient descent

'
(W, x,y)
W W —n————— FIX YOur Image X,
- y ow aﬂd}ftrue \alfe\ j:f

‘How does a small change in weights decrease our loss”
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Adversarial Attacks on Neural Networks

Adversarial Image:

Modify iImage to increase error

dJ(W,x,y)
0x

‘How does a small change in the input increase our 0SS

X <X+

Illil- Massachusetts 65191 Introduction to Deep Learning

. | ) 1G5
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Adversarial Attacks on Neural Networks

Adversarial Image:

Modify iImage to increase error

dJ(W,x,y)
0x

‘How does a small change in the input increase our 0SS

X <X+
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Adversarial Attacks on Neural Networks

Adversarial Image:

Modify iImage to increase error

!

!
(W x,
X< XT71 u FIX your welghts 6,

0x and true label y

‘How does a small change in the input increase our 0SS
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Synthesizing Robust Adversarial Examples

L* L -

" classified as turtle B classified as rifle
B classified as other

mEm  Massachusetts 65191 Introduction to Deep Learning
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Neural Network Limitations...

* Very data hungry (eg. often millions of examples)

* Computationally intensive to train and deploy (tractably requires GPUSs)

* Easily fooled by adversarial examples

* (an be subject to algorithmic bias
* Difficult to encode structure and prior knowledge during learning

* Poor at representing uncertainty (now do you know what the model knows!)
» Uninterpretable black boxes, difficult to trust

* Finicky to optimize: non-convex, choice of architecture, learning parameters

» Often require expert knowledge to design, fine tune architectures

I EEE Massachusetts 6.5191 Introduction to Deep Learning
I I Institute of
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Neural Network Limitations...

* Very data hungry (eg. often millions of examples)
* Computationally intensive to train and deploy (tractably requires GPUs)

* Easily fooled by adversarial examples

* (an be subject to algorithmic bias
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New Frontiers |:
Encoding Structure into Deep Learning



CNNs: Using Spatial Structure

3,0 9,9.09 99229999
SO OO 02099999
9000005 00000
OCRCEIRNOOCIEE .
ﬁ.‘;:;f.-ifa;-;:g.ﬁ*ﬁa ) Apply a set of weights to extract local features

ot + P "i-'-""*i}“'
OO . .
DLOLCOOOOCOOOD - 2) Use multiple filters to extract different features
PSPPI o o el o 90000
Siesssscoccesciiecccs
RODOODOOOCCOCE eI 3) Spatially share parameters of each filter
I 9,0900
920000000000000
VR
: / : : |
¢ \r 1 — sicveis
_.._.____.-""... INFLUT ."‘il:l'f'-l"n"ﬂLUTl'l:l'H-l- RELL POOLING CONMYOLUTION + RELU POOLING J {LATTEH EGLUJ:‘:TED 2 FTMA X "'Jr
G i Y
FEATURE LEARNING CLASSIFICATION
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Graphs as a Structure for Representing Data

coin

. coin
. "
N ./
push
T push
initial
state

State Machines

Social Networks { . AN
Biological Networks Mobility & Transport
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Graph Convolutional Networks

Convolutional Networks
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Graph Convolutional Networks

Convolutional Networks
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Graph Convolutional Networks

Convolutional Networks
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Graph Convolutional Networks

Convolutional Networks
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Graph Convolutional Networks

Convolutional Networks
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

O

A O
O
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

(O
.

B Massachusetts 1 |
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

(O
.

B Massachusetts 1 |
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

O

O O
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

O
O O

B Massachusetts 1 |
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

O

A O
O

Friday: Graph neural networks for odor prediction
Alex Wiltschko, Google Brain

B Massachusetts 1 |
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Learning From 3D Data

Point clouds are unordered sets with spatial dependence between points

Classification Part Segmentation Semantic Segmentation
IIIiI- EE;EEEEEH & iﬂtrﬂtcﬁalcélilcil\clamntrﬁwdgiﬁrﬂn mEEEHLFaE!EELEamiﬂg Qi CVPR 201/, 1745120




Extending Graph CNNs to Pointclouds

Capture local geometric features of point
clouds while maintaining order invariance

65191 Introduction to Deep Learning

Wang+ TOG 2019, [/29/20
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New Frontiers |1:
Uncertainty Estimation & Bayesian Deep Learning



Why care about uncertainty!

P(cat)

P(dog)
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Why care about uncertainty?
VWe need uncertainty metrics to assess the network's confidence In its predictions.

=

[ P P(cat)= 0.2
il .. ' “ hf F(dog) =08

Remember: P(cat) + P(dog) = 1

I I I i I- Wassachusetts 65191 Introduction to Deep Learning
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Bayesian Deep Learning for Uncertainty

Network tries to learn output, Y, directly from raw data, X

Find mapping, f, parameterized by weights W such that
min L(Y, f (X; W))

Bayesian neural networks aim to learn a posterior over welights,
P(W|X,Y):

P(Y|X,W)P(W)

P(WIX,Y) = —— T

III'- Massachuselts 65191 Introduction to Deep Learning
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Bayesian Deep Learning for Uncertainty

Network tries to learn output, Y, directly from raw data, X

Find mapping, f, parameterized by weights W such that
min L(Y, f (X; W))

Bayesian neural networks aim to learn a posterior over welights,
P(W|X,Y):

Intractable! P(W‘X, Y) — P(Yer W)P(W)
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Dropout for Uncertainty

Fvaluate T stochastic forward passes through the network {W,};—

Dropout as a form of stochastic sampling  z,,; ~ Bernoulli(p) Vw eW

Unregularized Kernel Bernoulll Dropout Stochastic Sampled
W Ew,t W!.'

jane
ol

3(P|x)°

BB Massachusetts .I |
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Model Uncertainty Application

Input Image Predicted Depth Model Uncertainty
am i assachusefis 65191 Introduction to Deep Learning o . /
IIIII ":::I'linnlng:r @ introtodeeplearning.com W @MITDeeplearning kencall & Gal NIFS 2017 1912




Uncertainty Estimation via Ensembling

Model ensembling for estimating uncertainty

I I I i I- Wassachusetts 65191 Introduction to Deep Learning
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Evidential Deep Learning

Directly learn the underlying uncertainties using evidential distributions

Deterministic Evidential
Competing loss training: . Regression . Regression
- \

Ma::{imize Miﬂiﬁ"liZE 0.5 -

model fit evidence on errors

=10 =3 0 3 10 -10 -5 0 5 10

Data No Data Ground Truth Prediction Uncertainty
BB Massachusetts 65191 |I'I’tl"l::'ll-ttlLI-::l:iII:III'I'|'.|::ll|::'EIE|:II Learning . o IO
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Evidential Deep Learning

Directly learn the underlying uncertainties using evidential distributions

Competing loss training: Robustness to adversarial perturbation

Maximize Minimize Adv&ﬁ;ﬂ:
model fit evidence on errors
Depth
Lahel

Predicted
Deterministic Evidential Depth
Regression Regression (Ours) Legend
1.5 - y . 1.5 - : .
| ; | ; : ==z T T r— Absolute
1.0} ' 1.0 3 " :.__!:.'-Jla_tf_-_i Hﬂ Dam Error
1 I | | i i
: || : S
0s | A as | | Ground Truth  Prediction Sradictive
Uncertainty
Epistemic Uncertainty
0 s 0 s 0 a5 0 5w Increasing Adversarial Pertubation »
mmm Massachusetts 65191 Introduction to Deep Learning o ,
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Multi- [ask Learning Using Uncertainty

| Semantic
Semantic Task
Decoder Uncertainty
Input Image
= 7,
R, 1| s oS Inst nstance ' Multi- Task
: ; nstance ulti- las
& L ‘j Y =1 Encoder Task —> Z,&
iV W o Decoder Uncertainty | LOSS
Depth
Depth Task
Decoder Uncertainty
W BN  Massachuselts 6519| Introduction to Deep Learnin ,
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Multi- [ask Learning Using Uncertainty

kb

. '.
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New Frontiers Il
Automated Machine Learning




Motivation: Automated Machine Learning

Standard deep neural networks are optimized for a single task

Complexity of models increases Greater need for specialized engineers

Often require expert knowledge to builld an architecture for a given task

I I I BE | asacisets 65191 Introduction to Deep Learning 9/
II Technology & introtodeeplearning.com W @MITDeeplearning e




Motivation: Automated Machine Learning

Standard deep neural networks are optimized for a single task

, [ﬁ}\ \ |
N, I|I | "l.. |
\ | \
Y | y !
u \
\ \ ‘
i . h
\ \

Complexity of models increases Greater need for specialized engineers

Often require expert knowledge to builld an architecture for a given task

Bulld a learning algorithm that learns which model to use to solve a given problem
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Motivation: Automated Machine Learning

Standard deep neural networks are optimized for a single task

, [ﬁ}\ \ |
N, I|I | "l.. |
\ | \
Y | y !
u \
\ \ ‘
i . h
\ \

Complexity of models increases Greater need for specialized engineers

—)

Often require expert knowledge to builld an architecture for a given task

Bulld a learning algorithm that learns which model to use to solve a given problem
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Automated Machine Learning (AutoML)

Sample architecture A
with probability ¢

Trains a child network
The controller (RNN)

with architecture
A to get accuracy R

Compute gradient of p and
scale it by R to update
the controller

BB Massachusetts [ |
III I I Wassachus 65191 Introduction to Deep Learning
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AutoML: Model Controller

At each step, the model samples a brand new network

Number Filter Filter Stride Stride Number Filter
« |of Filters|. | Height [+ | Width [, | Height [.| Width [\ |of Filters|. | Height [\
: 1 : : i 1 : 11 J‘

i i ' & 1 ¥ 1 ¥ 1 ¥ ] ¥ ! ¥ ! r

LI L LI LI LI LI LI L
Layer N-1 Layer N Layer N+1
s m | Hassachuseiis 65191 Introduction to Deep Learning — o
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AutoML: The Child Network

4 A\

Sampled network .
o RNIN —} Prediction

AV 4

Iraining Data —>

Compute final accuracy on this dataset.
Update RNN controller based on the accuracy of the child network after training.
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AutoML on the Cloud

@

-

AutoML VisionBETA AutoML Natural AutoML Translation®='A
Start with as little as a few dozen La Ng UHQEBETA Upload translated language pairs to train
photographic samples, and Cloud Automatically predict text categories your own custom model.

AutoML will do the rest. through either single or multi-label

classification.
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AutoML Spawns a Powerful ldea

* Design an Al algorithm that can build new models
capable of solving a task

* Reduces the need for experienced engineers to
design the networks

* Makes deep learning more accessible to the public

Connections and distinctions
between artificial and human
intelligence
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Introduction to Deep Learning

Lab 3: Reinforcement Learning

LINk to downloaa Iabs:
http://iIntrotodeeplearning.com#schedule

. Open the lab in Google Colab
2. Start executing code blocks and filling In the # 1ODOs
3. Need help! rind a |A or come to the front!




