

Deep Sequence Modeling

Ava Soleimany MIT 6.5191 January 19, 2021

Sequences in the Wild

Audio

Sequences in the Wild

Sequence Modeling Applications

One to One
Binary Classification

Many to One
Sentiment Classification

The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online

introtodeeplearning.com

12:45 PM - 12 Feb 2018

One to Many Image Captioning

"A baseball player throws a ball."

Many to Many

Machine Translation

Neurons with Recurrence

The Perceptron Revisited

Feed-Forward Networks Revisited

Feed-Forward Networks Revisited

$$x_t \in \mathbb{R}^m$$

$$\hat{y}_t \in \mathbb{R}^n$$

Handling Individual Time Steps

Neurons with Recurrence

Neurons with Recurrence

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)

Apply a recurrence relation at every time step to process a sequence:

Note: the same function and set of parameters are used at every time step

RNNs have a state, h_t , that is updated at each time step as a sequence is processed

RNN Intuition

```
my_{rnn} = RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden state = my rnn(word, hidden state)
next_word_prediction = prediction
# >>> "networks!"
```


RNN Intuition

```
my_{rnn} = RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden_state = my_rnn(word, hidden_state)
next_word_prediction = prediction
# >>> "networks!"
```


RNN Intuition

```
my_{rnn} = RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden state = my rnn(word, hidden state)
next word prediction = prediction
# >>> "networks!"
```


Input Vector x_t

Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{hh}^T h_{t-1} + \boldsymbol{W}_{xh}^T x_t)$$

Input Vector

 x_t

Output Vector

$$\hat{y}_t = W_{hy}^T h_t$$

Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{hh}^T h_{t-1} + \boldsymbol{W}_{xh}^T x_t)$$

Input Vector

 x_t

RNNs: Computational Graph Across Time

Represent as computational graph unrolled across time

RNNs: Computational Graph Across Time

RNNs from Scratch


```
class MyRNNCell(tf.keras.layers.Layer):
  def __init__(self, rnn_units, input_dim, output_dim):
    super(MyRNNCell, self).__init__()
    # Initialize weight matrices
    self.W_xh = self.add_weight([rnn_units, input_dim])
    self.W_hh = self.add_weight([rnn_units, rnn_units])
    self.W_hy = self.add_weight([output_dim, rnn_units])
    # Initialize hidden state to zeros
    self.h = tf.zeros([rnn_units, 1])
  def call(self, x):
    # Update the hidden state
    self.h = tf.math.tanh( self.W hh * self.h + self.W xh * x )
    # Compute the output
    output = self.W hy * self.h
    # Return the current output and hidden state
    return output, self.h
```


RNN Implementation in TensorFlow

tf.keras.layers.SimpleRNN(rnn_units)

RNNs for Sequence Modeling

One to One
"Vanilla" NN
Binary classification

Many to One Sentiment Classification

One to Many
Text Generation
Image Captioning

Many to Many
Translation & Forecasting
Music Generation

6.S191 Lab!

... and many other architectures and applications

Sequence Modeling: Design Criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

"This morning I took my cat for a walk."

"This morning I took my cat for a walk."
given these words

"This morning I took my cat for a walk."

given these words

predict the next word

"This morning I took my cat for a walk."

given these words

predict the

next word

Representing Language to a Neural Network

Neural networks cannot interpret words

Neural networks require numerical inputs

Encoding Language for a Neural Network

Neural networks cannot interpret words

Neural networks require numerical inputs

Embedding: transform indexes into a vector of fixed size.

I. Vocabulary:
Corpus of words

2. Indexing: Word to index

3. Embedding: Index to fixed-sized vector

Handle Variable Sequence Lengths

The food was great

VS.

We visited a restaurant for lunch

VS.

We were hungry but cleaned the house before eating

Model Long-Term Dependencies

"France is where I grew up, but I now live in Boston. I speak fluent ____."

We need information from **the distant past** to accurately predict the correct word.

Capture Differences in Sequence Order

The food was good, not bad at all.

VS.

The food was bad, not good at all.

Sequence Modeling: Design Criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

Backpropagation Through Time (BPTT)

Recall: Backpropagation in Feed Forward Models

Backpropagation algorithm:

- Take the derivative (gradient) of the loss with respect to each parameter
- 2. Shift parameters in order to minimize loss

RNNs: Backpropagation Through Time

RNNs: Backpropagation Through Time

Standard RNN Gradient Flow

Standard RNN Gradient Flow

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Standard RNN Gradient Flow: Exploding Gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Standard RNN Gradient Flow: Vanishing Gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Many values < 1: vanishing gradients

- 1. Activation function
- 2. Weight initialization
- 3. Network architecture

Why are vanishing gradients a problem?

Why are vanishing gradients a problem?

Multiply many small numbers together

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the ___"

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the ___"

"I grew up in France, ... and I speak fluent____"

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the ___"

"I grew up in France, ... and I speak fluent____"

Trick #1: Activation Functions

Trick #2: Parameter Initialization

Initialize biases to zero

Initialize **weights** to identity matrix
$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

This helps prevent the weights from shrinking to zero.

Solution #3: Gated Cells

Idea: use a more complex recurrent unit with gates to control what information is passed through

Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

Long Short Term Memory (LSTM) Networks

Standard RNN

In a standard RNN, repeating modules contain a simple computation node

LSTM modules contain computational blocks that control information flow

LSTM cells are able to track information throughout many timesteps

Information is added or removed through structures called gates

Gates optionally let information through, for example via a sigmoid neural net layer and pointwise multiplication

How do LSTMs work?

1) Forget 2) Store 3) Update 4) Output

I) Forget 2) Store 3) Update 4) Output LSTMs **forget irrelevant** parts of the previous state

1) Forget **2) Store** 3) Update 4) Output LSTMs **store relevant** new information into the cell state

1) Forget 2) Store **3) Update** 4) Output LSTMs **selectively update** cell state values

1) Forget 2) Store 3) Update 4) Output

The output gate controls what information is sent to the next time step

1) Forget 2) Store 3) Update 4) Output

LSTM Gradient Flow

Uninterrupted gradient flow!

LSTMs: Key Concepts

- 1. Maintain a separate cell state from what is outputted
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Store relevant information from current input
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation through time with uninterrupted gradient flow

RNN Applications

Example Task: Music Generation

Input: sheet music

Output: next character in sheet music

Example Task: Sentiment Classification

nput: sequence of words

Output: probability of having positive sentiment

loss = tf.nn.softmax_cross_entropy_with_logits(y, predicted)

Example Task: Sentiment Classification

Tweet sentiment classification

The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online introtodeeplearning.com

12:45 PM - 12 Feb 2018

Replying to @Kazuki2048

I wouldn't mind a bit of snow right now. We haven't had any in my bit of the Midlands this winter! :(

2:19 AM - 25 Jan 2019

Potential Issues

Potential Issues chien mange Encoding bottleneck Slow, no parallelization chien eats dog Decoder (French) Encoder (English)

Potential Issues

chien mange Attention mechanisms in neural networks provide learnable memory access eats Encoder (English) Decoder (French)

Application: Trajectory Prediction for Self-Driving Cars

Application: Environmental Modeling

Deep Learning for Sequence Modeling: Summary

- 1. RNNs are well suited for sequence modeling tasks
- 2. Model sequences via a recurrence relation
- 3. Training RNNs with backpropagation through time
- 4. Gated cells like LSTMs let us model long-term dependencies
- 5. Models for music generation, classification, machine translation, and more

6.S191: Introduction to Deep Learning

Lab 1: Introduction to TensorFlow and Music Generation with RNNs

Link to download labs: http://introtodeeplearning.com#schedule

- I. Open the lab in Google Colab
- 2. Start executing code blocks and filling in the #TODOs
 - 3. Need help? Come to the class Gather. Town!