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Learning in Dynamic Environments
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Reinforcement Learning: Robots, Games, the VWorld

Robotics

Game Play and Strategy

III-- Massachusetts 2519 | e DEEP ing

II ;E;ﬂ:: @ introtodeeplearningcom W @MITDeepleaming 1122/ 2]




Uk
. ek

L

Co-Lead, AlphaStar Project, ind

—
.
o



Classes of Learning Problems

Supervised Learning

Data: (x,y)
X 1s data, y I1s label

Goal: Learn function to map
X =Yy

Apple example:

This thing Is an apple.
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Classes of Learning Problems

Supervised Learning Unsupervised Learning
Data: (x,y) Data: x
X I1s data, y 1s label X 1s data, no labels!

Goal: Learn function to map Goal: Learn underlying
X =%y structure

Apple example: Apple example:

This thing is like
the other thing.

This thing Is an apple.
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Classes of Learning Problems

Supervised Learning Unsupervised Learning  Reinforcement Learning
Data: (x,y) Data: x Data: state-action pairs

X I1s data, y 1s label X 1s data, no labels!

Goal: Learn function to map Goal: Learn underlying Goal: Maximize future rewards

X =%y structure over many time steps
Apple example: Apple example: Apple example:
This thisg 13 snnle This thing is !ikﬂ tat this thing because it
5 PRI the other thing. will keep you alive.
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Classes of Learning Problems

Reinforcement Learning

Data: state-action pairs

RL: our focus today. Goal: Maximize future rewards

over many time steps

Apple example:

tat this thing because it
will keep you alive.
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Reinforcement Learning (RL): Key Concepts

Agent: takes actions.
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Reinforcement Learning (RL): Key Concepts

ENVIRONMENT

Environment: the world in which the agent exists and operates.
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Reinforcement Learning (RL): Key Concepts

Action: ENVIRONMENT

ACTIONS

Action: a move the agent can make In the environment.
Action space A: the set of possible actions an agent can make in the environment
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

Action: ENVIRONMENT

ACTIONS

Observations: of the environment after taking actions.
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS
State changes: S¢ 4 1

Action: ENVIRONMENT

ACTIONS

State: a situation which the agent perceives.
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 4 1
Reward: 7

Action: ENVIRONMENT

ACTIONS

Reward: feedback that measures the success or failure of the agent's action.
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 4 1
Reward: 7
AGENT Action: a, ENVIRONMENT

ACTIONS

Total Reward .

(Return)
=L
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 4 1
Reward: 7
AGENT Action: a, ENVIRONMENT

ACTIONS

Total Reward B,
Rt — Ii = T¢ +Tt+1 ...+T't+n+'“
1=t
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 4 1
Reward: 7
AGENT Action: a ENVIRONMENT
ACTIONS
Discounted 3
Total Reward AN R — i‘r-
(Return) t VT
iI=r
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 4 1
Reward: 7
AGENT Action: ENVIRONMENT
ACTIONS
Discounted

Q0
Total Reward ,
(Return) R, = Z Vi = Yo+ y T e e Y Mgy + o

1=t

Y. discount factor; 0 <y <1
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Defining the Q-function

Ry =Ty + YTpqq +Y Teqn + o

Jotal reward, Ry, 1s the discounted sum of all rewards obtained from time ¢t

Q(se, ar) = E[Re|se, a

The Q-function captures the expected total future reward an
agent In state, s, can receive by executing a certain action, a

I I I i R 65191 Introduction to Deep Learning

Technology @ introtodeeplearningcom W @MITDeepleaming 1122/ 21




How to take actions given a Q-function!?

Q(s¢ ap) = E|R;|s, a¢]
| 1

(state, action)

Ultimately, the agent needs a policy m(s), to infer the best action to take at its state, s

Strategy: the policy should choose an action that maximizes future rewarad

n*(s) = argmax Q(s, a)
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Deep Reinforcement Learning Algorithms

Value Learning Policy Learning

Find Q (s, a) Find T(s)

Sample a ~ m(s)

a = argmax Q(s, a)
a



Deep Reinforcement Learning Algorithms

Value Learning

Find Q (s, a)

a = argmax Q(s, a)
a



Digging deeper into the Q-function

Example: Atari Breakout

t can be very difficult for humans to
accurately estimate Q-values

Which (s, a) pair has a
higher Q-value! § &
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Digging deeper into the Q-function

Example: Atari Breakout - Middle

t can be very difficult for humans to
accurately estimate Q-values

Which (s, a) pair has a
higher Q-value! § &
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Digging deeper into the Q-function

Example: Atari Breakout - Side

t can be very difficult for humans to
_ accurately estimate Q-values

Which (s, a) pair has a
higher Q-value! § &
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Deep Q Networks (DQN)

How can we use deep neural networks to model Q-functions!

Action + State =2

- Expected Return

state, s Dee
N 0Ga

“move |
right”

action, a

Input Output
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Deep Q Networks (DQN)

How can we use deep neural networks to model Q-functions!

Action + State = State = Expected Return for Each Action
Expected Return
_|_, Q(s,ay)
state, s D
eep — (Q(s,a) Deep Q(s,a,)
| NN
“move
right” state, S Q(s, an)
action, a
Input Output Input Agent Output
> P P >
mmm Massachusetts 65191 Introduction to Deep Learni .
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!

Action + State =2 State = Expected Return for Each Action
Expected Return

—
- _L Q(s,a,)

T P — 6 = Deep _[* 0(5,2)
[ || NN
‘move
right” state, s Q(s,an)
action, a
Input Agent Output Input Agent Output

What happens if we take all the best actions!?

Maximize target return = train the agent

I I I am [ Ttichutess 65191 Introduction to Deep Learning

II m'rﬁ'iﬂig“:r & introtodeeplearning.com W @MITDeepleaming Mnih+ Nature 2015. 1/22/2]




Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!

Action + State =2 State = Expected Return for Each Action
Expected Return

- _|_ Q(s,a,)

state,
ate, s DI\TEIP — Q(s, a) — Deep Q(s,a,)
| NN
‘move
right” (s, an)
action, a
Input Output Input Agent Output
target
o ' Take all the best actions =2
(T' TY - ou Q(s’,a )) w target return
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!

Action + State =2 State = Expected Return for Each Action
Expected Return

| ] 1 0(s,a)

state, § Deep
NN — (Q(s,a) i Ll Deep Q(s,ay)
‘move |
right” state, s Q(s,an)
action, a
Input Output Input Agent Output
predicted
—

Q(s,a) prediction
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!

Action + State = State = Expected Return for Each Action
Expected Return
Q(s,ay)
, Dee
NNP — (Q(s,a) - Deep Q(s, ay)
‘move |
right” state, s Q(s,an)
action, a
Input Agent Output Input Agent Output
target predicted
2
L= ]E[H(r+ymaxQ(s’, a’)) — Q(s, a)” ] Q-Loss
ar
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Deep Q Network Summary

Use NN to learn Q-function and then use to infer the optimal policy, m(s)

dninet b Q(s,a) =20
= \
— Elilep Q(s,a,) =3 » T(s) = arg;naxt?(s, a)
& / = a; {=
Q(S: HE) = (
=

Send action back to environment and receive next state
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DQN Atari Results
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Downsides of Q-learning

Complexity:
* (Can model scenarios where the action space Is discrete and small
* (Cannot handle continuous action spaces

Flexibility:
* Policy 1s deterministically computed from the Q function by maximizing the
reward =2 cannot learn stochastic policies

To address these, consider a new class of RL training algorithms:
Policy gradient methods
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Deep Reinforcement Learning Algorithms

Policy Learning

Find T(s)

Sample a ~ m(s)



Deep Q Networks (DQN)

DQN: Approximate Q-function and use to infer the optimal policy, m(s)

Q(sr al) — 20
Deep \
NN Q(s,a;) =3 — q(s) = argmax Q(s, a)
P4 a
/ — H’l <:|
state, s Q(sg) =0
1 g 65191 Introduction to Deep Learni
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Policy Gradient (PG): Key Idea

Policy Gradient: Directly optimize the policy m(s)

Z P(a;|s) =1

P(ﬂ-llﬂ) = {). 9 EIIEA
D /
S - EEP P(ﬂzlﬂ) = (). 1 > H(S) ™~ P(ﬂ,l.ﬂ)
— .[11 <:|
<tatells P(ﬂ3|5) = (

6 VWhat are some advantages of this formulation!?
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Discrete vs Continuous Action Spaces

Discrete action space: which direction should | move! <:3 > ¢ E>

state, s
Left Stay Right
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I I I ' :‘:ﬂll’ﬂ;&’r @ introtodeeplearning.com W @MITDeepleaming 1122/ 2]




Discrete vs Continuous Action Spaces

Continuous action space: how fast should | move!?

P(als)

ﬁ-
L a
ctatelic Faster | Faster
1 Left Right
ER e 65191 Introduction to Deep Learning
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Policy Gradient (PG): Key Idea

Policy Gradient: tnables modeling of continuous action space

fn:_ P(als) =1

J

Mean,u = -1 v
Deep \‘P(ﬂ|5) = N(u,0%)
NN / n(s) ~ P(als)
Variance, 6% = 0.5 = —0.8 [m/s]
&

state, s [ P(als) = N(i,02)
a

-1

Faster :: j Faster
| eft Right
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Training Policy Gradients: Case Study

Reinforcement Learning Loop: Case Stuay — Self-Driving Cars

OBSERVATIONS

State changes: S¢4+1 Agent. vehicle

| e
. R TY ..."{?b% 4O State:  camera, lidar, etc

A ‘ w Action: steering wheel angle
Action: a; Reward: distance traveled

ACTIONS
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Training Policy Gradients

Training Algorithm

. Inrtialize the agent

2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probabllity of actions that
resulted In low reward

5. Increase probability of actions that
resulted in high reward
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Training Policy Gradients

Training Algorithm

. Inrtialize the agent

2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probabllity of actions that
resulted In low reward

5. Increase probability of actions that
resulted in high reward
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Training Policy Gradients

Training Algorithm

. Inrtialize the agent

2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probabllity of actions that
resulted In low reward

5. Increase probability of actions that
resulted in high reward
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Training Policy Gradients

Training Algorithm

. Inrtialize the agent

2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probabllity of actions that
resulted In low reward

5. Increase probability of actions that

resulted in high reward e
—
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Training Policy Gradients

Training Algorithm

log-likelihood of action

. Initialize the agent loss = —log P(a;|s;) R,

2. Run a pOlIC)/ until termination reward

3. Record all states, actions, rewards

4. Decrease probability of actions that VEREIADE SRICHnE | paate:

resulted in low reward w' =w — Vloss
w =w +|Vlog P(a.,|s;) R,

5. Increase probability of actions that
resulted in high reward

Policy gradient!
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Reinforcement Learning in Real Life

Training Algorithm

. Inrtialize the agent

2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probability of actions that
resulted in low reward

5. Increase probability of actions that
resulted in high reward
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Data-driven Simulation for Autonomous Vehicles

VISTA: Photorealistic and high-fidelity simulator for training and testing self-driving cars
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Deploying End-to-End RL for Autonomous Vehicles

Policy Gradient RL agent trained
entirely within VIS TA simulator

N

End-to-end agent directly
deployed into the real-world

N~

First full-scale autonomous

vehicle trained using RL
entirely in simulation and
deployed in real life!
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Deep Reinforcement Learning Applications




Reinforcement Learning and the Game of Go
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The Game of Go

Aim: Get more board territory than your opponent.
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Greater number of legal board positions than atoms in the universe.
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL
pnsltlnns policy network policy network Self—play data Value network

[ Lﬂ
Classification ﬁ A ] ot
— Self Self .

Regression
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL
pnsltlnns policy network policy network Self—play data Value network

“h’_’““"i
Classification A h IR
— el Self

Regression

‘

s
IA_'I-'
E"

i
"
8,

T.
ol I I

o
|
- '-:I.-

| 1,.;1 _{’;.._I_ ¢..

1) Initial training: human data
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL

positions policy network policy network Self-play data Value network
h 1’  Pens
Self & (81 © o )

L
Classification h ‘
— Self
Play Play REPYFS ,.—l

Regression

RPooiF
()

1) Initial training: human data

\ g < 2 - L}

2) Self-play and reinforcement learning
- super-human performance
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL

positions policy network policy network Self-play data Value network
h 1’  Pens
Self & (81 © o )

L
Classification h ‘
— Self
Play Play REPYFS ,.—l

Regression

RPooiF
()

1) Initial training: human data

\ g < 2 - L}

2) Self-play and reinforcement learning

- super-human performance \ )
3) “Inturtion” about board state

I I I am [ Ttichutess 65191 Introduction to Deep Learning




AlphaZero: RL from Self-Play (2018)

Sk

O
-
- Lu
- 2k
o
N 1k
AlphaZero
g
0 100k 200k 300k 400k 500k 600k 700k
Training Steps
am HeitaCuusems 6.5191 Introduction to Deep Leamni . .
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MuZero: Learning Dynamics for Planning (2020)

KNnowleqage KNnowlegage

Human  Domain  Known
Go data knowledge rules

il W - ] "
M g Wiy : . 5
Wsth” - il Aazt-
— =, il s .
- '.l g

AlphaGo becomes the first program to master Go using
neural networks and tree search

(Jan 2016, Nature)

AlphaGo
L

Go Chess shogi

AlphaZero masters three perfect information games
using a single algorithm for all games

(Dec 2018, Science)

3 Known
f'l!::ﬁaﬂﬂ Zerd Go Nlas ._ MuZero Go e, Shogi sl
AlphaGo Zero learns to play completely on its own, MuZero learns the rules of the game, allowing it to also
without human knowledge master environments with unknown dynamics.
(Oct 2017, Nature) (Dec 2020, Nature)
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MuZero: Learning Dynamics for Planning (2020)

How MulZero acts in its environment:
1) Observe  2) Search 3)Plan 4) Act
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Deep Reinforcement Learning: Summary

* Agents acting In * Q function: expected * Learn and optimize the
environment total reward given s, a policy directly

» State-action pairs =2 * Policy determined by * Applicable to
maximize future rewards selecting action that continuous action

» Discounting maximizes Q function spaces
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6.5191:
Introduction to Deep Learning

L ab 3: Reinforcement Learning

Link to download labs:
http://introtodeeplearning.com#schedule

1. Open the lab in Google Colab
2. Start executing code blocks and filling in the #TODOs
3. Need help! Come to the lab Zoom Q&A!




