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Algorithmic Bias in the Headlines

Al expert calls for end to UK use of

‘ - - { ' Al Bias Could Put Women'’s
ra(:lally biased EllgOI'ltth Lives At Risk - A Challenge For
Gender bias in Al: building Regulators
Bias in Al: A problem recognized but

fairer algorithms

still unresolved

Amazon, Apple, Google, IBM, and Microsoft worse at
transcribing black people's voices than white people's with

Al voice recognition, study finds

Millions of black people affected by racial
bias in health-care algorithms Racial bias in a medical algorithm favors white

Study reveals rampant racism in decision-making software used by US hospitals |]illl'l'|||!"i over sicker black Ilillli'lll?‘-

and highlights ways to correct it.
T'he Week in Tech: Algorithmic Bias Is

N . Bad. Uncovering It Is Good.

Al Self-Driving Cars

Artificial Intelligence has a gender bias

: : problem - just ask Siri
The Best Algorithms Struggle to Recognize Black Faces Equally

U'S government tests find aven top-pearforming facial recognition systems misidentifTy blacks at rates five 10 10 times higher than they do whites
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Algorithmic Bias in the Headlines

VVhat exactly does bias mean!
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What is in this image!
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What is in this image!

watermelon

watermelon slices

watermelon with

seeds
Juicy watermelon
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What is in this image?

But what about
red watermelon?

We tend not to think of
the contents of this image
as red watermelon.

Red is the prototypical color |
for watermelon flesh.
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| abeling, Prototyping, and Stereotyping

Ve label and categorize the world to reduce complex sensory inputs
into simplified groups that are easier to work with.

Prototypes are “typical” representations of a concept or object.
Ve tend to notice and talk about things that are atypical.

Biases and stereotypes arise when particular labels and features
confound decisions — whether human or artificial.
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Bias in Facial Detection

Independent Study | Independent Study ||
B UK academic algorithm
Gender Darker Darker Lighter Lighter Largest M Chinese commercial algorithm
Classifier Male Female Male Female Gap

American Indian

=l Microsoft 94.0% 79.2% 100% 98.3% 20.8% female
BN I - :
e g | E—— AmericanBdian

"3 Face 99.3% 65.5% 99.2% 94.0% 33.8% wole
e EEEE—. EE—— |
Asian female
] 88.0% 65.3% 99.7% 92.9% 34.4%

o B = Tl Black female

Asian male

Black male

White female

White male

0 10 20 30 40 50 60 70
False match rate (per 10,000)
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Bias in Image Classification

Predicted Classes

Bride

ress
- CNN - Ceremony

VVoman
VWedding

CNN for image
classification.

Ground Truth: Bride
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Bias in Image Classification

Predicted Classes

Clothing

Fvent

CNN ‘ Costume
Red
Performance art

\

CNN for image
classification.

e

Ground Truth: Bide |
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Bias in Object Recognition

Predicted Objects

Seasoning
Spice

Spice rack
Ingredient

5:¢3 .
': CNN for object
Ground Truth: Spices recognition.
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Bias in Object Recognition

Predicted Objects

Product {
Yellow

- 5
: mlﬁ »

-r
g’ S
‘ :iii

Drink
Bottle

CNN for object

Ground Truth Splces recognition.
o Massachusedts 65191 Introduction to Deep Learni e
I I I I :-ﬁ:,ﬂf};; @ introtodeeplearning.com yEE@EM\TDeE L earning HEVEEST ST UShen




Bias Correlation with Income and Geography
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Bias at All Stages of the Al Life Cycle

|. Data: imbalances with respect to class labels, features, input structure

2. Model: lack of unified uncertainty, interpretability, and performance metrics

3. Training and deployment: feedback loops that perpetuate biases

4. Evaluation: done in bulk, lack of systematic analysis with respect to data subgroups
5. Interpretation: human errors and biases distort meaning of results
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Understanding and Mitigating Algorithmic Bias

Types and Sources of Bias Strategies to Mitigate Bias




Taxonomy of Common Biases

Interpretation-Driven
Correlation Fallacy Overgeneralization

Correlation '= Causation “General” conclusions drawn
from limited test data

By no means an exhaustive list!
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Bias from the Correlation Fallacy

Total revenue generated by arcades
correlates with

Computer science doctorates awarded in the US
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Bias from Assuming Overgeneralization

Expectation:
Cups in my dataset

Reality:
Cups from many angles
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Distribution shift can result in neural network bias.

)
. 25

—.-J

r
pp—
e 1
T ]

= F
ar -
-

I I I am [ Ttichutess 65191 Introduction to Deep Learning

Institute of . . .
II Tﬂ:.ﬂ:f];, & introtodeeplearning.com W @MITDeepleaming e




Datasets with Distribution Shifts

1% .'r_-.l.i"rlh; ﬁ: "i;";_;ti
va! efBdRgn zt et aiy danes

_.q--r--_— - =

Satellite Image

S 2002 / 2009 /

E Americas Africa Americas Africa
- Q
E '%"5: shopping multi-unit recreational educational
SET mall residential facility institution
mn _

Task: Building / land classification
Distribution shift: [ime / geographic region
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Datasets with Distribution Shifts

Val (OOD) | Test (OOD)

Task: Disease classification from histopathology images
Distribution shift: Hospital source
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Taxonomy of Common Biases

Interpretation-Driven
Selection Bias

Data selection does not
reflect randomization

Ex: class imbalance

Sampling Bias

Particular data instances are
more frequently samplec
Ex: hair, skin tone

By no means an exhaustive list!
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Biases due to Class Imbalance

Frequency in Reality Frequency in Dataset Model Accuracy

Class Class
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Biases due to Class Imbalance

Frequency in Reality Frequency in Dataset Model Accuracy

Accuracy

Class Class Class
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Biases due to Class Imbalance

Frequency in Reality Frequency in Dataset Model Accuracy
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Biases due to Class Imbalance

Frequency in Reality Frequency in Dataset Model Accuracy

A

B C

Class Class

Goal: fair performance for all classes.
WWhy is class imbalance problematic!

III'_ NEISRChuSIR. 65191 Introduction to Deep Learning

I I Institute of

Technology @ introtodeeplearning.com uf @MITDeeplearning 1126/2]




Learning in the Face of Class Imbalance

1:20 class ratio

Incremental updates are
made to the classifier
during learning L2

. Random initialization
of classifier
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Learning in the Face of Class Imbalance

1:20 class ratio

Incremental updates are
made to the classifier
during learning
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Learning in the Face of Class Imbalance

1:20 class ratio

Incremental updates are
made to the classifier
during learning

I I I i a | Neitachusewe 65191 Introduction to Deep Learning

Institute of

Technology @ imtrotodeeplearning.com u @MITDeeplLearmning 1126721




Case Study: The Danger of Class Imbalance

Case Study: Cancer Detection from Medical Images

- Glioblastoma (GBM): most aggressive and deadliest brain tumor

- GBM incidence in USA: 3.19 per 100,000 individuals!
- Task: train CNN to detect GBM from MRI scans of the brain

VWhat if class incidence in dataset
reflected real-world incidence!

_ .f_-- . -

N\

99.997% 0.003%
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| earning from Class Balanced Data: Batch Selection

| class ratio

Incremental updates are
made to the classifier
during learning

. ' Random initialization
& of classifier
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| earning from Class Balanced Data: Batch Selection

| class ratio

Incremental updates are
made to the classifier
during learning
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| earning from Class Balanced Data: Batch Selection

. | class ratio

Balanced batches give
more information.
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Learning from Class Balanced Data: Example Weighting

Frequency Weighting Contribution

Class Class

= Massachusetts 65191 Introduction to Deep Learning
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Learning from Class Balanced Data: Example Weighting

Size == probability of selection during training
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But What About Biases in Features!?

Consider training a facial detection system on images of faces and images of non-faces:

Faces

HHEIHIIHI

| Non-Faces

Potential biases hidden within each class can be even more dangerous.
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Balanced Dataset

-
(T
L
ks
ad

in Facial Detect

Blonde Hair

1aS

Brown Hair

“Gold-Standard” Dataset

Hidden B

Black Hair

Case Study

Real World
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Case Study: Hidden Bias in Facial Detection

“Gold-Standard” Dataset

3

Accuracy

-

Traine CNN for Black Brown Blonde Red

facial detection.
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Case Study: Bias in Facial Detection
Independent Study | Independent Study ||

B UK academic algorithm

Gender Darker Darker Lighter Lighter Largest B Chinese commercial algorithm
Classifier Male Female Male Female Gap
American Indian

BE \icrosoft 94.0% 79.2% 100% 98.3% 20.8% female

B S PR American Indian
e male
. 3 FACE™ 99.3% 65.5% 99.2% 94.0% 33.8%

R B s Asian female
B 88.0% 65.3% 99.7% 92.9% 34.4%
— e e . Black female

. Asian male

Black male

White fermale

White male

O 10 20 30 40 50 60 70
False match rate (per 10,000)

How can learning pipelines uncover potential biases’
How can learning pipelines mitigate such biases if and when they exist!
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Learning lechniques to Improve Fairness

gé ot %
dataset, .
4

v

T Remove
problematic signal + 'H'

v

v
Mitigated bias Re-weighted signal
Improved fairness = 01 =™ Improved fairness

Biased model,
dataset, ...

Add signal for
desired features




Bias and Fairness in Supervised Classification

A classifier's output decision should be the same across sensitive
characteristics, given what the correct decision should be.

A classifier, fg(x) is biased if its decision changes after being exposed to

additional sensitive feature inputs. It is fair with respect to variables z if:

fo(z) = fo(z, 2)

For example, for a single binary variable z, fairness means:
Plygy=1lz=0,y=1|=Ply=1z=1,y = 1]
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Evaluating Bias and Fairness

Disaggregated evaluation: evaluate performance with respect to different subgroups

-~ 900 000 000
@00 AAA HENE

Intersectional evaluation: evaluate performance with respect to subgroup intersections
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Adversarial Multi- lask Learning to Mitigate Bias

Setup: specity attribute z for which
we seek to mitigate bias. Jointly X

predict output y and z.
Input Embedding

Two discriminator output heads: .

1. Targ:e‘.c / classl abel y idden Lavers
2. Sensitive attribute z

Negate gradient!

Train ad\fersarlal'l){: - Tack Attribute
1. Predict sensitive attribute z

| y Z
2. Negate gradient for z head

3. "Remove” effect of z on task Jointly predict output label y and
decision sensitive attribute z to remove from decision

I I I i a | Neitachusewe 65191 Introduction to Deep Learning
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Application to Language Modeling

Task: language model to complete analogies

He is to she, as doctor is to !/ X
-
. —— | —— Input Embedding
otz 07056 ]
0,686 e |
08700 06147 SOtRape
08674 0.6367 —
08612 0.6254 Tack e
0.8611 | cardiologist | 0.6088
08569 0.6081 y z
0.8564 | hospital 0.5969
— | ointly predict output label vy and
Sensitive attribute: Gender | .J 4 .p P Y .
sensitive attribute z to remove from decision
Illil- :Eif}%?m & iﬂmt;f;igﬂmﬁ;ﬁ” mgﬁémﬂﬁmammg Zhang+ AAAIAIES 2018. 1/26/2]




Adaptive Resampling for Automated Debiasing

Generative models can uncover the underlying latent variables in a dataset.

- < - < ﬁ: -
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Ly

Homogeneous skin color, pose Diverse skin color, pose, illumination

Can we use latent distributions to identify unwanted biases!?
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Mitigating Bias through Learned Latent Structure

I
oy
S
S
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Mitigating Bias through Learned Latent Structure
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Homogeneous skin color, pose

@

Estimate
distribution
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Mitigating Bias through Learned Latent Structure

@ Adaptively

resample data
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itigating Bias through Learned Latent Structure

O

Learn from fair

| atent distributions used to create fair

istribution -
data distributio and representative dataset
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Using Latent Variables for Automated Debiasing

Approximate the distribution of the latent space with a joint histogram
over the latent variables:

(Z|X A HQz zi| X)

Estimated joint Histogram for each

distribution Independence to latent variable z;
approximate

Define adjusted probability for sampling a particular datapoint x during training:

|
W(z(z)|X) H O (@)X 1o

Pmbablllty of
selecting datapoint Histogram for each Debiasing
latent variable z; parameter
BN Massachusetts 65191 Introduction to Deep Learning - .
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Adaptive Adjustment of Resampling Probability

b % Random Batch Sampling During  Batch Sampling During Training
E'E'mp'esm Standard Face Detection Training with Learned Debiaising
. | | f

10"

10°

10"

10°

Mumber of Faces

10°

10"

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005

Probability of Resampling

| ) _ Homogenous skin color, pose Diverse skin color, pose, illumination
Top 10 faces with Lowest Top 10 faces with Highest Mean Sample Prob: 7.57 x 10

Resampling Probability Resampling Probability

Mean Sample Prob: 1.03 x 10

Adaptive resampling based on automatically
_~ learned features -
A no need to specify attributes to debias against!
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Balanced Dataset for Evaluation

AVERAGE FACES

e Pilot Parliaments Benchmark 1
a .

(PPB) dataset

RWANDA
ONVINIA

e Fvaluation of facial detection
algorithms

* Skin tone, male/female binary
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y »
B °.Darker Male -~ -3
o t m
594 IE o
o/ : m
YeLighter Female " r 4
s . %Ligher Male
0% 20% 20% 9% 100% FEMALE FEMALE
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Evaluation: Decreased Categorical Bias

Disaggregated and intersectional evaluation: evaluate performance across
subgroups and combinations of subgroups

Accuracy (%)

80
Dark Male Dark Female Light Male Light Female Overall

[ No debiasing
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Understanding and Mitigating Algorithmic Bias

Types and Sources of Bias Strategies to Mitigate Bias




Al Fairness: Summary and Future Considerations

Al Best Practices Algorithmic Solutions Data and Evaluations

\ Dataset Methods advances to Sourcing and
é Documentation detect and mitigate biases Representation
Gebru+ arXiv 2018. during learning DeVries+ CVPR 2018

Model Reporting
and Curation

Mitchell+ FAT* 2019.

wwww Zhangt AAAI/AIES 2019. Distribution Shifts
Koh/Sagawa+ arXiv 2020.

| earned Latent

Reproducibility l.“l Structure

Amini/Soleimany+

and [ransparency AAAI/AIES 2019.

Fairness tvaluations
Hardt+ NeurlPS 2016.

R :
- Adversarial Learning — Data with
e

&P

Necessity of collaboration and education of Al researchers, engineers,
ethicists, corporations, politicians, end-users, and the general public.
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| ab competition entries due today!

Submit entries on Canvas.

Gather; Town Office Hours:

. Lab questions!
2. Find project teammates!
3. Project brainstorming and work!




