

Deep Sequence Modeling

Ava Soleimany MIT 6.5191 January 24, 2022

Sequences in the Wild

Audio

Sequences in the Wild

Sequence Modeling Applications

One to One Binary Classification

"Will I pass this class?" Student -> Pass?

Many to One Sentiment Classification

One to Many Image Captioning

"A baseball player throws a ball."

Many to Many Machine Translation

Neurons with Recurrence

The Perceptron Revisited

Feed-Forward Networks Revisited

Feed-Forward Networks Revisited

$$x_t \in \mathbb{R}^m$$

$$\hat{y}_t \in \mathbb{R}^n$$

Handling Individual Time Steps

Neurons with Recurrence

Neurons with Recurrence

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)

Apply a recurrence relation at every time step to process a sequence:

Note: the same function and set of parameters are used at every time step

RNNs have a state, h_t , that is updated at each time step as a sequence is processed

RINI Intuition

```
my_{rnn} = RNN()
hidden_state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden_state = my_rnn(word, hidden_state)
next word prediction = prediction
# >>> "networks!"
```


RINI Intuition

```
my rnn = RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden state = my rnn(word, hidden state)
next word prediction - prediction
# >>> "networks!"
```


RINI Intuition

```
my rnn = RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden_state = my_rnn(word, hidden_state)
next word prediction = prediction
# >>> "networks!"
```


Input Vector x_t

Update Hidden State

$$h_t = \tanh(\mathbf{W}_{hh}^T h_{t-1} + \mathbf{W}_{xh}^T x_t)$$

Input Vector

 x_t

Output Vector

$$\hat{y}_t = W_{hy}^T h_t$$

Update Hidden State

$$h_t = \tanh(\mathbf{W}_{hh}^T h_{t-1} + \mathbf{W}_{xh}^T x_t)$$

Input Vector

 x_t

RNNs: Computational Graph Across Time

Represent as computational graph unrolled across time

RNNs: Computational Graph Across Time

RNNs from Scratch


```
class MyRNNCell(tf keras layers Layer):
  def __init__(self, rnn_units, input_dim, output_dim):
    super(MyRNNCell, self) __init__()
    # Initialize weight matrices
    self W_xh = self add_weight([rnn_units, input_dim])
    self W hh = self add weight([rnn_units, rnn_units])
    self W hy = self add weight([output_dim, rnn_units])
    # Initialize hidden state to zeros
    self h = tf zeros([rnn units, 1])
  def call(self, x):
    # Update the hidden state
    self h = tf math tanh( self W hh * self h * self W xh * x )
    # Compute the output
    output = self W hy * self h
    # Return the current output and hidden state
    return output, self h
```


RNN Implementation in TensorFlow

tf.keras.layers.SimpleRNN(rnn_units)

RNNs for Sequence Modeling

One to One
"Vanilla" NN
Binary classification

Many to One Sentiment Classification

One to Many Text Generation Image Captioning

Many to Many
Translation & Forecasting
Music Generation

6.S191 Lab!

... and many other architectures and applications

Sequence Modeling: Design Criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

"This morning I took my cat for a walk."

"This morning I took my cat for a walk."

given these words

"This morning I took my cat for a walk."

given these words

predict the next word

"This morning I took my cat for a walk."

given these words

predict the

next word

Representing Language to a Neural Network

Neural networks cannot interpret words

Neural networks require numerical inputs

Encoding Language for a Neural Network

Neural networks cannot interpret words

Neural networks require numerical inputs

Embedding: transform indexes into a vector of fixed size.

I. Vocabulary:
Corpus of words

2. Indexing: Word to index

3. Embedding: Index to fixed-sized vector

Handle Variable Sequence Lengths

The food was great

VS.

We visited a restaurant for lunch

VS.

We were hungry but cleaned the house before eating

Model Long-Term Dependencies

"France is where I grew up, but I now live in Boston. I speak fluent ____."

We need information from **the distant past** to accurately predict the correct word.

Capture Differences in Sequence Order

The food was good, not bad at all.

VS.

The food was bad, not good at all.

Sequence Modeling: Design Criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence

Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

Backpropagation Through Time (BPTT)

Recall: Backpropagation in Feed Forward Models

Backpropagation algorithm:

- I. Take the derivative (gradient) of the loss with respect to each parameter
- Shift parameters in order to minimize loss

RNNs: Backpropagation Through Time

RNNs: Backpropagation Through Time

Standard RNN Gradient Flow

Standard RNN Gradient Flow

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Standard RNN Gradient Flow: Exploding Gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Standard RNN Gradient Flow: Vanishing Gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:
exploding gradients
Gradient clipping to
scale big gradients

Many values < 1: vanishing gradients

- Activation function
- 2. Weight initialization
- 3. Network architecture

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the ___"

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"I grew up in France, ... and I speak fluent____"

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the

"I grew up in France, ... and I speak fluent___"

Trick #1: Activation Functions

Trick #2: Parameter Initialization

Initialize biases to zero

Initialize **weights** to identity matrix
$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

This helps prevent the weights from shrinking to zero.

Trick #3: Gated Cells

Idea: use gates to selectively add or remove information within each recurrent unit with

Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

Long Short Term Memory (LSTMs)

Gated LSTM cells control information flow:

1) Forget 2) Store 3) Update 4) Output

LSTM cells are able to track information throughout many timesteps

LSTMs: Key Concepts

- I. Maintain a cell state
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Store relevant information from current input
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation through time with partially uninterrupted gradient flow

RNN Applications & Limitations

Example Task: Music Generation

Input: sheet music

Output: next character in sheet music

Example Task: Sentiment Classification

input: sequence of words

Output: probability of having positive sentiment

loss = tf nn softmax_cross_entropy_with_logits(y, predicted)

Example Task: Sentiment Classification

Tweet sentiment classification

The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online introtodeeplearning.com

12:45 PM - 12 Feb 2018

Replying to @Kazuki2048

wouldn't mind a bit of snow right now. We haven't had any in my bit of the Midlands this winter! :(

2:19 AM - 25 Jan 2019

Limitations of Recurrent Models

Limitations of RNNs

- Encoding bottleneck
- Slow, no parallelization
- Not long memory

RNNs: recurrence to model sequence dependencies

Sequence of outputs

Sequence of features

Sequence of inputs

RNNs: recurrence to model sequence dependencies

Limitations of RNNs

Not long memory

Can we eliminate the need for recurrence entirely?

Desired Capabilities

Can we eliminate the need for recurrence entirely?

Desired Capabilities

Long memory

Idea I: Feed everything into dense network

No recurrence

Not scalable

X No order

No long memory

Idea: Identify and attend to what's important

Can we eliminate the need for recurrence entirely?

Attention Is All You Need

Intuition Behind Self-Attention

Attending to the most important parts of an input.

- 1. Identify which parts to attend to
- 2. Extract the features with high attention

Similar to a search problem!

A Simple Example: Search

Understanding Attention with Search

I. Compute attention mask: how similar is each key to the desired query?

Understanding Attention with Search

2. Extract values based on attention:

Return the values highest attention

Goal: identify and attend to most important features in input.

- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Data is fed in all at once! Need to encode position information to understand order.

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Data is fed in all at once! Need to encode position information to understand order.

Goal: identify and attend to most important features in input.

- Encode position information
- Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Attention score: compute pairwise similarity between each query and key

How to compute similarity between two sets of features?

Also known as the "cosine similarity"

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Attention score: compute pairwise similarity between each query and key

How to compute similarity between two sets of features?

Also known as the "cosine similarity"

Goal: identify and attend to most important features in input.

- 1. Encode position information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Attention weighting: where to attend to! How similar is the key to the query?

$$softmax\left(\frac{Q\cdot K^T}{scaling}\right)$$

Attention weighting

Goal: identify and attend to most important features in input.

- 1. Encode position information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Last step: self-attend to extract features

$$softmax\left(\frac{Q \cdot K^{T}}{scaling}\right) \cdot V = A(Q, K, V)$$

Goal: identify and attend to most important features in input.

- 1. Encode position information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

These operations form a self-attention head that can plug into a larger network. Each head attends to a different part of input.

Applying Multiple Self-Attention Heads

Attention weighting

Value

Output

Output of attention head I

Output of attention head 2

Output of attention head 3

Self-Attention Applied

Language Processing

BERT, GPT-3

Devlin et al., NAACL 2019 Brown et al., NeurlPS 2020

Biological Sequences

AlphaFold2

Jumper et al., Nature 2021

Computer Vision

Vision Transformers

Dosovitskiy et al., ICLR 2020

Deep Learning for Sequence Modeling: Summary

- 1. RNNs are well suited for sequence modeling tasks
- 2. Model sequences via a recurrence relation
- 3. Training RNNs with backpropagation through time
- 4. Models for music generation, classification, machine translation, and more
- 5. Self-attention to model sequences without recurrence

6.S191: Introduction to Deep Learning

Lab 1: Introduction to TensorFlow and Music Generation with RNNs

Link to download labs: http://introtodeeplearning.com#schedule

- 1. Open the lab in Google Colab
- 2. Start executing code blocks and filling in the #TODOs
 - 3. Need help? Come to the class Gather. Town!