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Labs and Prizes

Lab |: Music Generation Lab 2: Computer Vision Lab 3: Reinforcement Learning

Beats Headphones 24" HD Display Monitor Quadcopter Drone
+ Deploy your model on
L% a real self-driving car
Lab submission: 1/27/22 .
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Final Class Project

Option |: Proposal Presentation * Judged by a panel of judges

* At least | registered student to * lop winners are awardea:
be prize eligible

* Present a novel deep learning
research idea or application

* 3 minutes (strict)
* Presentations on Friday, Jan 28

e Submit groups by Wed |/26
| 1:59pm ET to be eligible

* Submit slides by Thu |/27
1 1:59pm ET to be eligible

* |nstructions: bit.ly/3aO0QEuG | |
3x Display Monitors
Bl Massachusetts 6S19] Introduction to DEEP Learni
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Final Class Project

Option 2:Write a |-page review
of a deep learning paper

* Grade Is based on clarity of
writing and technical
communication of main ideas

* Due FriJan 28 3:59pm ET

I I I- B Massachusats 65191 Introduction to DEEP LEEI'TliF'IE

II ‘:*:ﬁﬁﬂt]ign:r &0 introtedeeplearning.com W @MITDeeplearning /26122




Up Next: Guest Lectures

11

Omer Keilaf Jasper Snoek Anima Anandkumar Miguel Jette

Amir Day Google NVIDIA Jenny Drexler
Innoviz Caltech ReVvAl

>
GO gle NVIDIA. »
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‘Deep Voice’ Software

Can Clone Anyone's The Rise Of Deep Learning

Voice With Just 3.7
Seconds of Audio

Lat Thare Be Sighd: Hew Deeih Leariang is Helping tho Bl Sen

Using enippets of volces, Baidu's 'Deop Voloce'
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‘Creative’ AlphaZero leads way for
chess computers and, maybe, science
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nced in just four years
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So far in 6.5191...
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Power of Neural Nets

Universal Approximation [ heorem

A feedforward network with a single layer is sufficient to approximate, to
an arbitrary precision, any continuous function.

EEE 0\ ch its P '
I |I stitute of 6519 Introduction to Deep Learning Hornik+ Neural Networks 1989, 1/24/22
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Power of Neural Nets

Universal Approximation [ heorem

A feedforward network with a single layer is sufficient to approximate, to
an arbitrary precision, any continuous function.

Caveats:

The number of I'he resulting
hidden units may model may not
be infeasibly large generalize
BEm  Massachusetts 65191 Introduction to Deep Learning .
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Artificial Intelligence “Hype™: Historical Perspective
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Limitations



Rethinking Generalization

“Understanding Deep Neural Networks Requires Rethinking Generalization™

banana tree
e Massachuselts 65191 Introduction to Deep Learning
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Rethinking Generalization

"Understanding Deep Neural Networks Requires Rethinking Generalization™
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Rethinking Generalization

"Understanding Deep Neural Networks Requires Rethinking Generalization™

banana
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Rethinking Generalization

“Understanding Deep Neural Networks Requires Rethinking Generalization™

banana dog dog
e Massachuselts 65191 Introduction to Deep Learning
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Capacity of Deep Neural Networks

| 00%
accuracy
0%
original randomization completely
labels | random
. Training Set lesting Set
BE Massachusetts 65191 Introduction to DEEP LEEI"HIH"IE
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Capacity of Deep Neural Networks

1007
- |I |I | l |
original randomization completely
labels | random
. Training Set i lesting Set
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Capacity of Deep Neural Networks

Modern deep networks can
perfectly fit to random data

000 o o oo o e o e s e i e e P
- |l II |l I
0% l

original randomization completely
labels random

. Training Set i lesting Set
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
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Neural Networks as Function Approximators

Neural networks are excellent function approximators
...when they have training data

®
H‘u ./.\‘\a .;
\ / ® ,././ How do we know when our

\ / network doesn't know!

S o O

I lli- Massachusetts 65191 Introduction to Deep Learning
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Deep Learning = Alchemy?

X

Training da

Random At Learning

network & algorithm
architecture =

l II- mm  Massachusetts 65191 Introduction to Deep Learning
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Neural Network Failure Modes, Part |

Irain network to
colorize BV images.

Why could this be the case?

I II- mE  Massachuselts 65191 Introduction to Deep Learning

II ‘.Ir:g::::!ign:r &0 introtedeeplearning.com W @MITDeeplearning Flsola 6,867, 1/26/22




lII-- Massachusetts 2510) | T . .

II E&“ﬂiﬁ; &0 introtedeeplearning.com W @MITDeeplearning Flsola 6,867, 1/26/22




Neural Network Failure Modes, Part |l

Tesla car was on autopilot prior to fatal
crash in California, company says

The crash near Mountain View, California, last week Killed the driver:

. 710 TIMES THE CAR
@NEWS " WOULD SWIVEL TOWARD
THAT SAME EXACT BARRIER

Hv Mark Osborne

DEADLY DISASTER

HIGHWAY CRASH

TESLA AUTOPILOT WAS ON BEFORE MODEL X ACCIDENT . "“ E}]":‘ e

Il om0y wgl B o» o 3

COURTESY OF TESLA

GODGLE STREET VIEW HURSHAY MARTH 2

| amsacnusam. 65191 Introduction to Deep Learning
III -::‘EE:.::E,E; &0 introtedeeplearning.com W @MITDeeplearning ABL News. 1/26727




Safety-critical
applications

Sparse and/or
noisy datasets
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VWhat uncertainties do we need!?

oo
*

b

P(cat)

i gl
P(dog)
W

6.S191 Lecture

|/ 26{22
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.
-
p,
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VWhat uncertainties do we need!?

Ve need uncertainty metrics to assess the noise inherent to the data.
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aleatoric uncertainty

Remember: P(cat) + P(dog) = 1

65191 Introduction to Deep Learning

W @MITDeeplearning

P(dog) = 0.5

*x
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VWhat uncertainties do we need!?

We need uncertainty metrics to assess the network’s confidence in its predictions.
epistemic uncertainty

Remember: P(cat) + P(dog) = 1

P(cat)= 0.2

o

6.S191 Lecture

|/ 26{22
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Neural Network Failure Modes, Part Il

Original image Perturbations Adversarial example
Temple (97%) Ostrich (98%)
BE Massachusetts 65191 Introduction to | P . =
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Adversarial Attacks on Neural Networks

Perturbations

65191 Introduction to Deep Learning 0622
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Adversarial Attacks on Neural Networks

Remember:

Ve train our networks with gradient descent

dJ(W,x,y)

W W —n PO

"How does a small change in weights decrease our loss”

65191 Introduction to Deep Learning
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Adversarial Attacks on Neural Networks

Remember:

Ve train our networks with gradient descent

d](W,x,y)

W W —n P

"How does a small change in weights decrease our loss”

65191 Introduction to Deep Learning
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Adversarial Attacks on Neural Networks

Remember:

Ve train our networks with gradient descent

!
oj(W,x,y)
WeW—n———— FIX your Image X,
y ow and true label y

"How does a small change in weights decrease our loss”

mm chuselts ' |
Mamnashny 65191 Introduction to Deep Learning
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Adversarial Attacks on Neural Networks

Adversarial Image:

Modify iImage to increase error

oJj(W,x,y)
0x

"How does a small change in the input increase our loss”

X X+n

I I II B Massachusats 65191 Introduction to DE:EP L!EEI"I"liF'IE
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Adversarial Attacks on Neural Networks

Adversarial Image:

Modify iImage to increase error

oJj(W,x,y)
0x

"How does a small change in the input increase our loss”

2 —8-Tn
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Adversarial Attacks on Neural Networks

Adversarial Image:

Modify iImage to increase error

!

'
] (W, x,
2 — & Tn u FIX your welghts @,

0x and true label y

"How does a small change in the input increase our loss”

I I II B Massachusats 65191 Introduction to DE:EP L!EEI"I"liF'IE
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Synthesizing Robust Adversarial Examples

il iy

%I‘
i

" classified as turtle B classified as rifle
B classified as other

II I i B - 65191 Introduction to Deep Learning
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Algorithmic Bias

Overcoming Racial Bias In Al Racial bias in a medieal algorithm favors white
Systems And Startlingly Even In palients over sicker black patients

| Al expert calls for end to UK use of

b it : r : Al Bias Could Put Women'’s
I acmlly biased Ellg()l'ltth Lives At Risk - A Challenge For

Gender bias in Ak building = REE:JIE:EE
fairer algorithms odelieni, =

still unresolved

Amazon, Apple, Google, IBM, and Microsoft worse at
transcribing black people's voices than white people’s with
Al voice recognition, study finds

Millions of black people affected by racial
biasin health-care algorithms

When It Comes to Gorillas, Google Photos Remains Blind

The Week in Tech: Algorithmic Bias Is
Bad. Uncovering It Is Good.

and highlights ways Lo correct it.

Google fixed' its racist algorithm by removing
gorillas from its image-labeling tech

Artificial Intelligence has a gender bias

problem - just ask Siri
The Best Algorithms Struggle to Recognize Black Faces Equally
U%S goverhimant tests find aven bop-perfodming facial recognitiom tystems mitkdentify blacks at rates five to 10 thmet Righad than they do whites
6.S5191 Lab
B Massachusetts 65191 Introduction to Deep Learning
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Neural Network Limitations...

* Very data hungry (eg. often millions of examples)

* Computationally intensive to train and deploy (tractably requires GPUs)

* tasily fooled by adversarial examples

* (an be subject to algorithmic bias

* Poor at representing uncertainty (how do you know what the model knows?)

* Uninterpretable black boxes, difficult to trust

* Difficult to encode structure and prior knowledge during learning

* Finicky to optimize: non-convex, choice of architecture, learning parameters

» Often require expert knowledge to design, fine tune architectures

I I II B Massachusats 65191 Introduction to DE:EP L!EEI"I"liF'IE
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Neural Network Limitations...

* (Can be subject to algorithmic bias

* Poor at representing uncertainty (how do you know what the model knows?)

* Uninterpretable black boxes, difficult to trust

6.S191 Lab
+ Lecture
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Neural Network Limitations...

* Difficult to encode structure and prior knowledge during learning
* Finicky to optimize: non-convex, choice of architecture, learning parameters

* Often require expert knowledge to design, fine tune architectures
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New Frontiers |:
Encoding Structure into Deep Learning



CNNs: Using Spatial Structure

00 00 0.X000000
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S O T Oy 1Y Appl f weish local f
000005 S 289N ) Apply a set of weights to extract local features

o s, =
RN ,
OOOOCOOOCOODN = Z) Use multiple filters to extract different features
e'e's'e'ee's's's 0’ e® 00000
2/85.9,8.89,9.0,058 9% =+=+=+=+=+= 3) Spatially share parameters of each filter
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0000 0000000000 o<
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FEATURE LEARNMNING CLASSIFICATION
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Graphs as a Structure for Representing Data

coin N 0
’ coin )_I\ )J\
P N CH3(CHz)11CHz O o7 “CH;
y ~_/ >
push
T push
initial
state

State Machines

Pe,, Ak Molecules
)/ ' A VNS AAX
H 3 11*" __.___ ..
: -I :u.‘_ -- <
Social Networks -A‘ '

Many real-world data — such as networks — P =d %
cannot be captured by “standard” 1 .
encodings or Euclidean geometries |

Biological Networks Mobility & Transport

l IIIIII 8 e—— 65191 Introduction to Deep Learning
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Graph Convolutional Networks

Convolutional Networks

I II- mm  Massachusetts 65191 Introduction to Deep Learning

II ':f:f:hﬂul::t!f:gn:r &0 introtedeeplearning.com W @MITDeeplearning /26122




Graph Convolutional Networks

Convolutional Networks

I II- mm  Massachusetts 65191 Introduction to Deep Learning
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Graph Convolutional Networks

Convolutional Networks
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Graph Convolutional Networks

Convolutional Networks
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Graph Convolutional Networks

Convolutional Networks

I II- mm  Massachusetts 65191 Introduction to Deep Learning
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

O

o—"
D
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

O
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

O
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

O

O O
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

O
O O
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Graph Convolutional Networks

Graph Convolutional Networks (GCNs)

O

o—"
D
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Applications of Graph Neural Networks

Molecular Discovery

N\ s
\

Message-passing neural network

lin+ JCIM 2013, Soleimany+ ACS Cent. 5a. 2071

P

| )
© |

\ d

® \[f/f'N
Halicin: novel antibiotic

discovered via deep learning FoN

Stokes+ Celf 2020

I I I- Bl Massachuseils

l I Institute of
Technology

Traffic Prediction

E A Improvements with GoogleMaps

|:I|.I.'

347%

e

41%

43%

DeepMind + GoogleMaps

65191 Introduction to Deep Learning
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COVID-19 Forecasting
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Spatio-temporal data
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Graph network + temporal embedding
Kapoor+ K0 2020
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Learning From 3D Data

Point clouds are unordered sets with spatial dependence between points

u{f table?
car?
Classification Part Segmentation Semantic Segmentation
I I I i I- E%.,EEEE&M &p iﬂtmtcﬁslii;:::ﬂmgﬁn mﬁMLffDmEﬂE L earning Qi+ CVPR 2017, 112622




Extending Graph CNNs to Pointclouds

Capture local geometric features of point
clouds while maintaining order invariance

65191 Introduction to Deep Learning
introtodeeplearningcom W @MITDeeplearning

Wang+ TOG 2019. 1/26/22




New Frontiers |l
Automated Machine Learning & Al



Motivation: Automated Machine Learning

Standard deep neural networks are optimized for a single task

F o
R 7
I.';}' Ii. r.;:;}lll p
| .r""'i | | . | | .' / |
/TN

i,
©;
(

Complexity of models increases Greater need for specialized engineers

Often require expert knowledge to build an architecture for a given task

Build a learning algorithm that learns which model to use to solve a given problem
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Automated Machine Learning (AutoML)

Sample architecture A
with probability i

Trains a child network

with architecture
A to get accuracy R

The controller (RNN)

Compute gradient of p and
scale it by R to update
the controller
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AutoML: Model Controller

At each step, the model samples a brand new network
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AutoML: I he Child Network

a

Sampled network w
£ o RNIN —’ Prediction

9 g

Training Data —>

Compute final accuracy on this dataset.
Update RNIN controller based on the accuracy of the child network after training.
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Learning Architectures for Image Recognition

a a 1 oy
Neural architecture search algorithm: Sample architecture A

with probability p

Y

The controller (RNN)

Train a child network
with architecture A to
convergence to get
validation accuracy R

\ J \. 7
tE-I:EIlE gradient of p by H

LED update the controller
.

Controller architecture for constructing convolutional layers:

I
new hidden layer!
~ Select one EEII':H:I second Select operation for Salect operation for Select method 1o : y |
hidden state idden state first hidden state second hidden state combing hidden state o '] ey

softmanx
layear

controller
nidden layer
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Learning Architectures for Image Recognition

Learned architecture for convolutional cell

concal

Normal Cell

Institute of

Technology &p introtedeeplearning.com
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Model performance on ImageNet
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From AutoML to AutoAl

AutoAl

Provide data in Generate and rank Save and deploy

Prepare data Select model type

a CSV file model pipelines a model

Feature type detection Selection of the best Hyper-parameter
Missing values algorithm for the data optimization (HPO)
imputation Optimized feature
Feature encoding and engineering
scaling
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AutoAl Spawns a Powerful Idea

* Design an Al pipeline that can build new models
capable of solving a task

* Reduces the need for experienced engineers to
design the networks

* Makes deep learning more accessible to the public

Connections and distinctions
between artificial and human
intelligence




65191
Introduction to Deep Learning

Lab 3: Reinforcement Learning

Link to download labs:
http://introtodeeplearning.com#schedule

. Open the lab iIn Google Colab
2. Start executing code blocks and filling in the #TODOs
3. Need help!? Come to |0-250/Gather. Town!




