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Modern Era of Statistics
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Modern Era of Statistics
Language Models size — up to Dec, 2022
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Modern Era of Statistics
Time Series

Medical Diagnoses

® Chemotherapy o Radiotherapy
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(b) Decide optimal time of treatment (¢) Decide when to stop treatment

(a) Decide treatment plan

https://www.vanderschaar-lab.com/individualized-treatment-effect-inference/

Financial Time Series

Market Summary > Vanguard Total Stock Market Index Fund ETF
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Modeling time series of 90k time steps long,
with Liquid Structural State-Space Models (Liquid-S4)

https://github.com/raminmh/liquid-s4
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Modern Era of Statistics

Generative modeling

Generative Adversarial Networks Stable Diffusion
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Modern Era of Statistics

Bigger seems to be better? But why?
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Solving n equations requires n unknowns

2x + 3y = 20
4x — 2y = 12

But then deep learning:

Choose excessively more unknowns to learn from n data (equations)!
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Scale in Modern Machine Learning

MNIST n =60k points, d = 28 x 28 images

Today models with millions of parameters are trained on MNIST
The performance improves with increasing the number of parameters!

How does this make sense? What are we learning?

. . Ho aram
Generalization bound « ffp—
dataset size

ImageNet: is 1.4M images of size 256 x 256 x 3 and models can be hundreds of millions of parameters.

NLP: datapoints of few billions, and models are hundreds of billions!
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Prompt: A portrait photo of a kangaroo wearing an orange hoodie and blue
sunglasses standing on the grass in front of the Sydney Opera House holding a
sign on the chest that says Welcome Friends!
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Benign Overfitting & Double Descent

Experiment from [Nakkiran et al., 2019] on CIFAR-10 with 15% label noise:
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Scaling does help generalization a bit!
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Modern Era of Statistics

Model Size

Belkin et al. 2020 & Nakkiran et al. 2021



Modern Era of Statistics

Generalization across Scale improves Robustness
many tasks and domains
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Scale Improves Robustness

Experiment from [Madry et al., 2018] on MNIST:
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They use adversarial training against Projected Gradient Decent (PGD) attacks on various number of params.
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Scale is a law of robustness

A Universal law of robustness [Bubeck and Sellke 2021]:
https://youtu.be/0OzGguadEHOU

Fix any “reasonable” function class with p parameters (e.g., deep

nets with poly-size parameters and NOT Kolmogorov-Arnold type
networks).

Sample n data points from a “truly high dimensional”
distribution (e.g., a mixture of Gaussians, or ImageNet with a
properly defined notion of “dimension”). Add label noise.

Then, to memorize this dataset (i.e., optimize the training error

below the label noise level), and to do so robustly (in the sense of
being Lipschitz), one must necessarily have dramatic
overparameterization:

v

p=nd
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Kolmogorov-Arnold Representation Theorem

fx) = (@1, 20) = Zcb (Z %(%))

the non-smoothness of the inner functions and
their "wild behavior” has limited the practical use
of the representation [Girosi & Poggio 1989]

Lipschitzness: If | move my inputs by € then |
would ideally want the output also moves by €

dy (f(z1), f(z2)) < Kdx(z1,x2)

Bubeck and Sellke NeurlPS 2021




Why is p > nd called "dramatic Overparameterization” ?

Intuitively, memorizing n data points is about satisfying n equations, so order n parameters should be enough.

Theorem (Baum 1988)
Two layer neural net with threshold activation function only need (p = O(n)) to memorize binary labels.

[Yun, Sra, Jadbabaie 2019; Bubeck, Eldan, Lee, Mikulincer 2020]
In fact the same is true with RelLU on real labels.

[Bubeck, Eldan, Lee, Mikulincer 2020] In fact even Neural Tangent Kernels can do it.

Noel Loo
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Examples In real-world data:

MNIST. It has around n = 10° and d =~ 103. [Madry et al., 2018] show a transition in robust accuracy at
aroundp =~ 10°

Note 1: their notion of robustness (PGD) does not exactly match the law of robustness (Lipschitz constant).

Note 2: the law seems to be contradicted since 10° <« 10° x103 ?
No. MNIST is NOT truly “10° — dimensional”. “Effective dimension”: d ¢ =~ 10" 2> p ~nds¢

Note 3: what is “noisy labels” in real data? Measuring the “difficult” part of a learning problem. For MNIST it
should be 2-5% gain in accuracy.

What about ImageNet? It'sn = 10” and d = 10° (d.sr = 10°?), hence we predict that at least 10*°
parameters are needed. Current models are too small?!??? (Less than 10° parameters)

Modern Era of Statistics

Vanguard = Bubeck and Sellke NeurlIPS 2021 https://youtu.be/OzGguadEHOU



What about Smoothness?

All these constructions are Q(v/d) Lipschitz even for well-dispersed data
(e.g., i.i.d. on the sphere), but in principle one can memorize such data with
0O(1) — Lipschitz functions ( We assume n = poly(d)):

SN

*\y‘ 0
%

Picture can easily be realized with k = O(n) neurons (p = nd). So we have two

options: either small model (p = n) but nonrobust (Lip = Vd ), or very large
(p=nd) and very robust (Lip = 1).

s this tradeoff real? Can we do better than Lip < 0(@)?

The law of robustness says this is tight!
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Great Generalization Great Generalization

More Robust More Robust
Reasoning Reasoning?
Bias and Fairness Bias and Fairness?

Energy?
Accountability?

Energy
Accountability

Overparameterization

N\ - -
\ Classical statistics

Model Size

HOW?




Neuroscience inspiration as inductive bias

Liquid Neural Networks

Lechner et al. Nature Machine Intelligence 2020
Hasani et al. Nature Machine Intelligence 2022

© Image: Allen Institute for Brain Science



Expressivity memory Mixed-horizon

Nervous Systems

(Image: Allen Institute for Brain Science) % . ‘E:‘:% . DECISIOH makmg
§ AAAI EDZf‘f:j
15t latent dimension
Causality
Liquid Networks
dx(t)/dt = —x(t)/T + S(t)
S(t) = f(x(¢t),1(¢),¢,0)(A—x(t)) I(t)
NeurlPS 2021
ICML 2020
ICRA 2015
NeurlPS Deep Neurons & Synapses ’ sl st s Extrapolation
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What are the building blocks’ differences?

Postsynaptic Neuron

v Neural dynamics are typically

continuous processes and are Presynaptic Stimuli dx(t)
described by differential equations I(t) At
v’ Synaptic release is much more than h /

scalar weights

v’ Recurrence, memory, and sparsity Synapses

Modern Era of Statistics
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Let’s incorporate these building block differences to:

Improve representation learning
Improve robustness and flexibility of models
Improve models’ interpretability

!

Explore Continuous-time (depth) models

Modern Era of Statistics
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What is a continuous- time/depth neural network?

dx
7t = f(n,,k,,ltype) (.’,U(t), I(t), 9) Residual Network ODE Network
Number of layers < " Model parameters 4 41~
Width -' ' 3] - 35
o e ’ Inputs 5 -
Hidden state 9] o |
. - ’. - 7 R
| 4
activations — sigmoid (1.0) | 1 1:
ﬂ — g Dynamical systems .
3l : :‘I;plLIJS 0 N
gussan | W e Input/Hidden/Output Input/Hidden/Output
)| dh(t
h; 1 =h; + f(hy, 6;) &Eftl = f(h(?),t,0)
He et al. Chen et al.
D.__/
_ CVPR 2016 NeurlPS 2018
- 3 2 1 owi @ 3 4 Figure Credit: Chen et al. NeurIPS 2018
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What is a continuous- time/depth neural network?

Standard Recurrent
x(t+1)=f(x(t) I(t)t;0
Neural Network (RNN) ( ) = f(x(e), I(2) )

Hopfield 1982

Neural ODE dx(t)

Chen et al. NeurlPS, 2018 dt 3 f(x(t)’ I(t)’ L 9)

Continuous-time d e Ground Truth
X(T X(T .

(CT) RNN di L XD @, 10,t56) ~ prediction

Funahashi et al. 1993 t w  Extrapolation

Figure Credit: Chen et al. NeurIPS 2018
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Liquid Time-Constant (LTC) networks

1. Linear state-space model

dx(t)/dt = —x(t)/7 +S(t) S(t) ¢ RM

2. Non-linear synapse Model

S(t) = f(x(2),1(2),1,0)(A—x(1))

dx(t)
dt

A | E (), 1(2), 1, 0) |x(6)+ F(x(2), 1(2), £, 0) A

“Liquid” = variable

Modern Era of Statistics
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Liquid Time-Constant Networks

Standard Neural Nets Liquid Neural Nets

wo (. )

1 ‘ ‘ ‘ .
[(t [t intrinsic coupling
( ) Wo(.) liquidity modulator I(t)
B Input regulator

. Modern Era of Statistics
b o R. Hasani Hasanl, Lechner, Amini, GI’OSU, Rus et al. AAAI 2021



Standard Neural Network

0.06 0.08 0.1 0.12

Steering angle

Liquid Neural Network

0.06 0.08 0.1 0.12

Steering angle



LTCS Performance https://github.com/mlech26l/ncps
High-fidelity autonomy by LTCs - end-to-end learning

200x60 Conv Conv Conv Conv Conv Conv Split Dense Merge Dense Dense Dense
RGB 28@5x5 30@5x5 32@3x3 34@3x3 36@3x3 8@3x3
stride 2  stride 2 stride 2

What it we replace the fully connected layers by a recurrent neural network?

ODE-RNN LSTMs LTC-based Networks?
X(t) ? | ,, , , . Y
1/7 y_:-'i'H : | @ i | J’_|_®7!_{1;_>_‘®_<D‘ X (t+ )
_.l I “_'F ai Yizlz — Hiz) izl |
; L : By

In —["-'.[[ Yimln — Fmﬂ i
) gi, + Cm,/

V - Modern Era of Statistics * o _ * .
angu i i Lechner, Hasani, Amini, Henzinger, Grosu, Rus, Nature Machine Intelligence, 2020



| TCs: Performance https://github.com/mlech26l/ncps
High-fidelity autonomy by LTCs
end-to-end learning of Neural Circuit Policies (NCP)

Now we compare properties of NCPs with a number of other models

NCPs LSTMs
| Convolutional Convolutional LSTM.
Convolutional Neural Networks (CNNs) CT-RNNs
Convolutional

Camera input

Vangua.rd Modern Era of Statistics

TP Lechner, Hasani, Amini, Henzinger, Grosu, Rus, Nature Machine Intelligence, 2020
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NCP driving performance Sensory Inter Command Motor

under 0%=0.1 pertubation neurons neurons neurons neurons
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| TCs: Performance 25
Robustness to perturbations

20

)

D

K

)
- CNN g 15

LSTM e
- CT-RNN E 10

== LTC (ours) =
e < 5

Liquid time-constant neuron

resilience to sensory noise ¢

0 0.1 0.2
Input noise variance
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Camera input stream
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Our solution
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Why can LTCs learn better causal relationships?

Taxonomy of Models

Adapted from: Peters, Janzing, Scholkopf, MIT Press, 2017

Dynamic Causal Models

dx
- hsical — = g(x(t), 1(t);6)
? Structural causal -+ 102 x(2) + 1))
Internal coupling
? Causal graphs Internal Intervention
. Statistical models External Intervention

The LTC model reduces
mathematically to a
Dynamic Causal Model

Insights about system

B Learn from data Predict in |ID
Answer counter factual Interventions

Modern Era of Statistics
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Differential equations can form causal structures

Physical dynamics can be modeled by a set of
differential equations

Describe effect as a result
of interventions

Predict future evolution of the
dynamical system

(Friston et al., 2003)

Modern Era of Statistics
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Differential equations can form causal structures

Given the following system of differential equations:

dxX B
dt

where x € R¢, x(0) = g, ¢g(x) = nonlinearity

g(X),

Picard-Lindelof theorem Euler solution
(Nevanlinna, 1989) The Euler method unrolling:

states that above DE has a unique A ' x(t + 0t) = x(t) + dt g(x)

solution as long as g is Lipschitz

Causal structure
(Schaolkopt, 2019)

Representation under uniqueness conditions forms a temporally causal structure

Modern Era of Statistics
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Dynamic Causal Models (DCMs)

Bilinear
dX approxtmation dX
— = g(x(1),I(1);0) w— —- = (A+I(t)B)x(t) +C(I(1))
dt (Friston et al., 2003) dt
Internal coupling Internal Intervention External Intervention
_ 9y 9% _ 09
e 0% |;_, B_é?x@I 3 o1, _,

Controls coupling sensitivity

r Requlates external in
among network’s nodes egulates external input

Regulates hidden state

The Liquid Time-constant (LTC) model reduces to a Dynamic Causal Model of this form if

—— 1. ¢(-) is continuous and bounded — ——— 2. T s positive
e.q., tanh(W,x(t) + WI(t) + b) Enforced by activation constraint
(Hirsch and Smale, 1973, Hasani, et al. 2021) (Funahashi and Nakamura, 1993)
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| TC-based: Neural Circuit Policies
Performance — Attention

III-II-II.I!
90000000
@0

””’|

Flying Performance Visual Backprop Attention Map

L ” )

-y |

¥4

., -

5T
1:1- _t'..
{# :

Vorbach*, Hasani*, Amini, Lechner, Rus. NeurlPS 2021



Liquid Neural Networks

Performance — Attention CT-GRU
* Red cubic target is fixed.
* Drone learns to navigate to B
target by visual inputs only E
What the drone attends to
Modern Era of Statistics _ o
Vorbach*, Hasani*, Amini, Lechner, Rus. NeurlPS 2021
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Closed-form Solution of Liquid Networks https://github.com/raminmh/CfC

Closed-form Continuous-time Neural Networks

Postsynaptic Neuron
we solve this in

Presynaptic Stimuli dx(t) x(t) closed-form

I(t) 7 =~ 15 — (5 =
@ this is a liquid time- (x(0) = 4) e—[;ﬂ’(f(t))]t f(=1(t)) + A

: constant differential
equation instance

Synapses x(t) Postsyr?a ptic neuron’s pc_}tential
A Synaptic reversal potential
f(.) Synaptic release nonlinearity
S(t) = f(l(t)) (4 —x(t)) T Postsynaptic neuron’s time-constant

Modern Era of Statistics
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Tightness of the Closed-form Solution in Practice

liquid time-constant (LTC) module

S o<

Input stream

% @ Outputs

Perception module dynamics of each node
dx
=—(w, +fC,D))x(t)+ A f(x,I Inputs I(t)
dt (we+ 706 1)) x(8) fx1) neuron’s state x(t)
" Nonlinearity f(.)
E J ) le.l -'P:ﬁ'. ﬂ Parameters w;, A
g | li! j }_ | ||.
) 1 _1 Vg 2 A -
= | 1) i J H "
g / ‘;'1_1' | A/ Jw\H closed-form
= CfCh.. 1/ \ .m,l % 5“ VA .
a N ; 'm ; T“w ﬁ"! ‘W " J‘ v ' solution of LTC
5 *-,"‘ci.! .! L”
O b
Time (s)

x(t) = (x(0) — A) e~ We+f@DIE £y ) + A
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How Well liquid CfCs perform in Time-series modeling?

Physical Dynamics Modeling

Vanguard

Modern Era of Statistics
R. Hasani

Table 6: Per time-step regression. Walker2d kinematic dataset. (mean =+ std, N = 5)

Model Square-error

TODE-RNN (Rubanova et al., 2019) 1.904 + 0.061
TCT-RNN (Funahashi and Nakamura, 1993) 1.198 = 0.004
TAugmented LSTM (Hochreiter and Schmidhuber, 1997) 1.065 &= 0.006
TCT-GRU (Mozer et al., 2017) 1.172 £ 0.011
TRNN-Decay (Rubanova et al., 2019) 1.406 == 0.005
TBi1-directional RNN (Schuster and Paliwal, 1997) 1.071 4+ 0.009
TGRU-D (Che et al., 2018) 1.090 £+ 0.034
TPhasedLSTM (Neil et al., 2016) 1.063 4= 0.010
TGRU-ODE (Rubanova et al., 2019) 1.051 £ 0.018
TCT-LSTM (Me1 and Eisner, 2017) 1.014 = 0.014
TODE-LSTM (Lechner and Hasani, 2020) 0.883 + 0.014
cORNN (Rusch and Mishra, 2021) 3.241 = 0.215
Lipschitz RNN (Erichson et al., 2021) 1.781 == 0.013
LTC (Hasani et al., 2021) 0.662 + 0.013
Transformer (Vaswani et al., 2017) 0.761 £ 0.032
C1-S (ours) 0.948 + 0.009
CtC-noGate (ours) 0.650 + 0.008
C1C (ours) 0.643 + 0.006
CfC-mmRNN (ours) 0.617 £ 0.006

Hasani et al. Nature M| 2022
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Sensor view

LTC-based Network

Task: Identify and navigate to target
Deploy: Closed-loop testing =+ v,
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Brain-inspired inductive biases could break the scaling law of neural networks

Generalization | More Robust | Better Reasoner | Fairer| Energy efficient | Accountable

Overparameterization

e — — v — — — —— — — — —— — — — — — —— . - L B B § 4 B 3 R B N _ B B _§ R R L R R R LS

\ . .
\ Classical statistics

Model Size



The Modern Era of Statistics

Summary

v The law of robustness is reall p = n d where d is the effective dimensionality

v' Overparameterization improves generalization, and robustness, but does come
with sociotechnical challenges (e.g., accountability, fairness and bias, energy)

v' Architectural Inductive biases, and dynamic processes in neural network
architectures (Liquid Neural Networks) could alleviate many of the challenges

v' Liguid networks enable robust representation learning outside of
overparameterization regime, as they have causal mechanisms that dramatically

reduces a network’s perceived effective dimensionality.



Some Resources

Get hands-on with LTC-based networks:

github.com/mlech261/ncps

Get hands-on with the closed-form liquid networks:

github.com/raminmh/C£C

Get hands-on with Liquid-S4:
github.com/raminmh/liquid-s4

Get in touch:
rhasani@mit.edu

ramin hasani@vanguard.com



