Deep Computer Vision

Alexander Amini

MIT 6.S191

January 20, 2021
“To know what is where by looking.”
To discover from images what is present in the world, where things are, what actions are taking place, to predict and anticipate events in the world
The rise and impact of computer vision

- Robotics
- Accessibility
- Biology & Medicine
- Mobile computing
- Autonomous driving
Impact: Facial Detection & Recognition
Impact: Self-Driving Cars

AUTONOMOUS
24.0 mph
Impact: Medicine, Biology, Healthcare

Breast cancer

COVID-19

Skin cancer
Impact: Accessibility
What Computers “See”
Images are Numbers
Images are Numbers
Images are Numbers

An image is just a matrix of numbers $[0, 255]!$
i.e., 1080x1080x3 for an RGB image
Tasks in Computer Vision

- **Regression**: output variable takes continuous value
- **Classification**: output variable takes class label. Can produce probability of belonging to a particular class
High Level Feature Detection

Let’s identify key features in each image category

Nose, Eyes, Mouth
Wheels, License Plate, Headlights
Door, Windows, Steps
Manual Feature Extraction

- Domain knowledge
- Define features
- Detect features to classify

Problems?
Manual Feature Extraction

1. Domain knowledge
 - Viewpoint variation
 - Scale variation
 - Deformation
 - Occlusion
 - Illumination conditions
 - Background clutter
 - Intra-class variation

2. Define features
3. Detect features to classify
Manual Feature Extraction

- Domain knowledge
 - Viewpoint variation
 - Scale variation
 - Deformation
 - Occlusion
 - Illumination conditions
 - Background clutter
 - Intra-class variation

- Define features to classify
Learning Feature Representations

Can we learn a **hierarchy of features** directly from the data instead of hand engineering?

Low level features

Mid level features

High level features

Edges, dark spots

Eyes, ears, nose

Facial structure
Learning Visual Features
Fully Connected Neural Network
Fully Connected Neural Network

Input:
- 2D image
- Vector of pixel values

Fully Connected:
- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!
Fully Connected Neural Network

Input:
- 2D image
- Vector of pixel values

Fully Connected:
- Connect neuron in hidden layer to all neurons in input layer
- No spatial information!
- And many, many parameters!

How can we use spatial structure in the input to inform the architecture of the network?
Using Spatial Structure

Input: 2D image. Array of pixel values

Idea: connect patches of input to neurons in hidden layer. Neuron connected to region of input. Only "sees" these values.
Using Spatial Structure

Connect patch in input layer to a single neuron in subsequent layer. Use a sliding window to define connections.

How can we weight the patch to detect particular features?
Applying Filters to Extract Features

1) Apply a set of weights – a filter – to extract **local features**

2) Use **multiple filters** to extract different features

3) Spatially **share** parameters of each filter
 (features that matter in one part of the input should matter elsewhere)
Feature Extraction with Convolution

- Filter of size 4x4: 16 different weights
- Apply this same filter to 4x4 patches in input
- Shift by 2 pixels for next patch

This “patchy” operation is **convolution**

1) Apply a set of weights – a filter – to extract **local features**

2) Use **multiple filters** to extract different features

3) **Spatially share** parameters of each filter
Feature Extraction and Convolution
A Case Study
X or X?

Image is represented as matrix of pixel values... and computers are literal!
We want to be able to classify an X as an X even if it's shifted, shrunk, rotated, deformed.
Features of X
Filters to Detect X Features

filters
The Convolution Operation

\[1 \times 1 = 1 \]

element wise multiply

add outputs

\[= 9 \]
The Convolution Operation

Suppose we want to compute the convolution of a 5x5 image and a 3x3 filter:

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs...
The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:
The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:
The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:
The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:
The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:
The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:
The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:
The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:
The Convolution Operation

We slide the 3x3 filter over the input image, element-wise multiply, and add the outputs:
Producing Feature Maps

Original
Sharpen
Edge Detect
“Strong” Edge Detect
Feature Extraction with Convolution

1) Apply a set of weights – a filter – to extract **local features**

2) Use **multiple filters** to extract different features

3) **Spatially share** parameters of each filter
Convolutional Neural Networks (CNNs)
1. **Convolution**: Apply filters to generate feature maps.

2. **Non-linearity**: Often ReLU.

3. **Pooling**: Downsampling operation on each feature map.

 Train model with image data.
 Learn weights of filters in convolutional layers.
Convolutional Layers: Local Connectivity

For a neuron in hidden layer:
- Take inputs from patch
- Compute weighted sum
- Apply bias
Convolutional Layers: Local Connectivity

For a neuron in hidden layer:
- Take inputs from patch
- Compute weighted sum
- Apply bias

4x4 filter: matrix of weights w_{ij}

$$\sum_{i=1}^{4} \sum_{j=1}^{4} w_{ij} x_{i+p,j+q} + b$$

1) applying a window of weights
2) computing linear combinations
3) activating with non-linear function
CNNs: Spatial Arrangement of Output Volume

Layer Dimensions:
\[h \times w \times d \]
where \(h \) and \(w \) are spatial dimensions
\(d \) (depth) = number of filters

Stride:
Filter step size

Receptive Field:
Locations in input image that a node is path connected to

\[\text{tf.keras.layers.Conv2D(filters=d, kernel_size=(h,w), strides=s)} \]
Introducing Non-Linearity

- Apply after every convolution operation (i.e., after convolutional layers)
- ReLU: pixel-by-pixel operation that replaces all negative values by zero. **Non-linear operation!**

Rectified Linear Unit (ReLU)

\[g(z) = \max(0, z) \]

```
tf.keras.layers.RelU
```
Pooling

How else can we downsample and preserve spatial invariance?

1) Reduced dimensionality
2) Spatial invariance
Representation Learning in Deep CNNs

Low level features

Edges, dark spots
Conv Layer 1

Mid level features

Eyes, ears, nose
Conv Layer 2

High level features

Facial structure
Conv Layer 3
CNNs for Classification: Feature Learning

1. Learn features in input image through **convolution**
2. Introduce **non-linearity** through activation function (real-world data is non-linear!)
3. Reduce dimensionality and preserve spatial invariance with **pooling**
CNNs for Classification: Class Probabilities

- CONV and POOL layers output high-level features of input
- Fully connected layer uses these features for classifying input image
- Express output as probability of image belonging to a particular class

\[
\text{softmax}(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}
\]
import tensorflow as tf

def generate_model():
 model = tf.keras.Sequential([
 # first convolutional layer
 tf.keras.layers.Conv2D(32, filter_size=3, activation='relu'),
 tf.keras.layers.MaxPool2D(pool_size=2, strides=2),

 # second convolutional layer
 tf.keras.layers.Conv2D(64, filter_size=3, activation='relu'),
 tf.keras.layers.MaxPool2D(pool_size=2, strides=2),

 # fully connected classifier
 tf.keras.layers.Flatten(),
 tf.keras.layers.Dense(1024, activation='relu'),
 tf.keras.layers.Dense(10, activation='softmax') # 10 outputs
])
 return model
An Architecture for Many Applications
An Architecture for Many Applications

Classification
Object detection
Segmentation
Probabilistic control
Classification: Breast Cancer Screening

International evaluation of an AI system for breast cancer screening

CNN-based system outperformed expert radiologists at detecting breast cancer from mammograms

Breast cancer case missed by radiologist but detected by AI
Object Detection

Image x → CNN → Taxi

Class label y

Image x → CNN → Label (x, y, w, h)
Object Detection

Image x

Output:

taxi: (x1, y1, w1, h1)

Image x

Output:
taxi: (x1, y1, w1, h1)

person: (x2, y2, w2, h2)

person: (x3, y3, w3, h3)

...
Naïve Solution to Object Detection

Problem: Way too many inputs! This results in too many scales, positions, sizes!
Object Detection with R-CNNs

R-CNN algorithm: Find regions that we think have objects. Use CNN to classify.

1. Input image
2. Extract region proposals (~2k)
3. Compute CNN features
4. Classify regions

Problems: 1) Slow! Many regions; time intensive inference.
 2) Brittle! Manually defined region proposals.
Faster R-CNN Learns Region Proposals

Classification of regions \(\rightarrow\) object detection

Feature extraction over proposed regions

Region proposal network to learn candidate regions

Learned, data-driven

Image input directly into convolutional feature extractor

Fast! Only input image once!
Semantic Segmentation: Fully Convolutional Networks

FCN: Fully Convolutional Network. Network designed with all convolutional layers, with **downsampling** and **upsampling** operations.
Semantic Segmentation: Biomedical Image Analysis

Brain Tumors
Dong+ MIUA 2017.

Malaria Infection
Continuous Control: Navigation from Vision

Raw Perception I (ex. camera)

Coarse Maps M (ex. GPS)

Possible Control Commands
End-to-End Framework for Autonomous Navigation

Entire model is trained end-to-end **without any human labelling or annotations**

\[L = -\log(P(\theta|I, M)) \]
Deep Learning for Computer Vision: Impact
Deep Learning for Computer Vision: Summary

Foundations
- Why computer vision?
- Representing images
- Convolutions for feature extraction

CNNs
- CNN architecture
- Application to classification
- ImageNet

Applications
- Segmentation, image captioning, control
- Security, medicine, robotics
6.S191: Introduction to Deep Learning
Lab 2: Computer Vision

Link to download labs:
http://introtodeeplearning.com#schedule

1. Open the lab in Google Colab
2. Start executing code blocks and filling in the #TODOs
3. Need help? Come to the class Gather.Town!