Deep Generative Models

Ava Soleimany

MIT 6.S191

January 28, 2020
Which face is fake?

A B C
Supervised vs unsupervised learning

Supervised Learning

Data: \((x, y)\)
\(x\) is data, \(y\) is label

Goal: Learn function to map \(x \rightarrow y\)

Examples: Classification, regression, object detection, semantic segmentation, etc.

Unsupervised Learning

Data: \(x\)
\(x\) is data, no labels!

Goal: Learn some hidden or underlying structure of the data

Examples: Clustering, feature or dimensionality reduction, etc.
Supervised vs unsupervised learning

Supervised Learning

Data: \((x, y)\)
\(x\) is data, \(y\) is label

Goal: Learn function to map
\[x \rightarrow y \]

Examples: Classification, regression, object detection, semantic segmentation, etc.

Unsupervised Learning

Data: \(x\)
\(x\) is data, no labels!

Goal: Learn the hidden or underlying structure of the data

Examples: Clustering, feature or dimensionality reduction, etc.
Generative modeling

Goal: Take as input training samples from some distribution and learn a model that represents that distribution.

Density Estimation

- Input samples: Training data \(P_{\text{data}}(x) \)
- Generated samples: Generated \(P_{\text{model}}(x) \)

How can we learn \(P_{\text{model}}(x) \) similar to \(P_{\text{data}}(x) \)?
Why generative models? Debiasing

Capable of uncovering **underlying features** in a dataset

Homogeneous skin color, pose

VS

Diverse skin color, pose, illumination

How can we use this information to create fair and representative datasets?
Why generative models? Outlier detection

- **Problem:** How can we detect when we encounter something new or rare?
- **Strategy:** Leverage generative models, detect outliers in the distribution
- Use outliers during training to improve even more!

95% of Driving Data:
1. sunny, 2. highway, 3. straight road

Detect outliers to avoid unpredictable behavior when training

- Edge Cases
- Harsh Weather
- Pedestrians
Latent variable models

Autoencoders and Variational Autoencoders (VAEs)

Generative Adversarial Networks (GANs)
What is a latent variable?

Myth of the Cave
What is a latent variable?

Can we learn the true explanatory factors, e.g. latent variables, from only observed data?
Autoencoders: background

Unsupervised approach for learning a lower-dimensional feature representation from unlabeled training data.

Why do we care about a low-dimensional z?

“Encoder” learns mapping from the data, x, to a low-dimensional latent space, z.
Autoencoders: background

How can we learn this latent space?
Train the model to use these features to **reconstruct the original data**

“Decoder” learns mapping back from latent, z, to a reconstructed observation, \hat{x}
Autoencoders: background

How can we learn this latent space?
Train the model to use these features to **reconstruct the original data**

\[\mathcal{L}(x, \hat{x}) = \|x - \hat{x}\|^2 \]

Loss function doesn’t use any labels!
Autoencoders: background

How can we learn this latent space?
Train the model to use these features to **reconstruct** the original data

\[\mathcal{L}(x, \hat{x}) = \|x - \hat{x}\|^2 \]

Loss function doesn’t use any labels!
Dimensionality of latent space → reconstruction quality

Autoencoding is a form of compression!
Smaller latent space will force a larger training bottleneck

2D latent space

5D latent space

Ground Truth
Autoencoders for representation learning

Bottleneck hidden layer forces network to learn a compressed latent representation

Reconstruction loss forces the latent representation to capture (or encode) as much “information” about the data as possible

Autoencoding = Automatically encoding data
Variational Autoencoders (VAEs)
Traditional autoencoders
VAEs: key difference with traditional autoencoder
VAEs: key difference with traditional autoencoder

Variational autoencoders are a probabilistic twist on autoencoders!
Sample from the mean and standard dev. to compute latent sample
VAE optimization

Encoder computes: \(p_\theta(z|x) \)

Decoder computes: \(q_\theta(x|z) \)
VAE optimization

Encoder computes: $p_\phi(z|x)$

$\mathcal{L}(\phi, \theta) = \text{(reconstruction loss)} + \text{(regularization term)}$

Decoder computes: $q_\theta(x|z)$
VAE optimization

Encoder computes: $p_{\phi}(z|x)$

Decoder computes: $q_{\theta}(x|z)$

$L(\phi, \theta, x) = (\text{reconstruction loss}) + (\text{regularization term})$
VAE optimization

Encoder computes: $p_{\phi}(z|x)$

Decoder computes: $q_{\theta}(x|z)$

$L(\phi, \theta, x) = \text{(reconstruction loss)} + \text{(regularization term)}$
VAE optimization

Inferred latent distribution

Fixed prior on latent distribution

\[D \left(\frac{p_{\phi}(z|x)}{p(z)} \right) \]

Encoder computes: \(p_{\phi}(z|x) \)

Decoder computes: \(q_{\theta}(x|z) \)

\[\mathcal{L}(\phi, \theta, x) = \text{(reconstruction loss)} + \text{(regularization term)} \]
Priors on the latent distribution

\[D \left(p_\phi(z|x) \ |\ p(z) \right) \]

Inferred latent distribution \(\uparrow \)

Fixed prior on latent distribution \(\downarrow \)

Common choice of prior:

\[p(z) = \mathcal{N}(\mu = 0, \sigma^2 = 1) \]

- Encourages encodings to distribute encodings evenly around the center of the latent space
- Penalize the network when it tries to “cheat” by clustering points in specific regions (i.e. memorizing the data)
Priors on the latent distribution

\[D \left(p_{\Phi}(z|\mathbf{x}) \| p(z) \right) \]
\[= -\frac{1}{2} \sum_{j=0}^{k-1} \left(\sigma_j + \mu_j^2 - 1 - \log \sigma_j \right) \]

Common choice of prior:
\[p(z) = \mathcal{N}(\mu = 0, \sigma^2 = 1) \]

- Encourages encodings to distribute encodings evenly around the center of the latent space
- Penalize the network when it tries to “cheat” by clustering points in specific regions (ie. memorizing the data)
VAEs computation graph

Encoder computes: $p_\phi(z|x)$

Decoder computes: $q_\theta(x|z)$

$L(\phi, \theta, x) = \text{(reconstruction loss)} + \text{(regularization term)}$
VAEs computation graph

Problem: We cannot backpropagate gradients through sampling layers!

Encoder computes: $p_\phi(z|x)$

Decoder computes: $q_\theta(x|z)$

$L(\phi, \theta, x) = \text{(reconstruction loss)} + \text{(regularization term)}$
Reparametrizing the sampling layer

Key Idea:

\[z \sim \mathcal{N}(\mu, \sigma^2) \]

Consider the sampled latent vector \(z \) as a sum of

- a fixed \(\mu \) vector,
- and fixed \(\sigma \) vector scaled by random constants drawn from the prior distribution

\[z = \mu + \sigma \odot \varepsilon \]

where \(\varepsilon \sim \mathcal{N}(0,1) \)
Reparametrizing the sampling layer

Original form

Deterministic node

Stochastic node

\[z \sim p_\phi(z|x) \]
Reparameterizing the sampling layer

Original form

Reparameterized form

Deterministic node

Stochastic node

$z \sim p_\phi(z|x)$

$z = g(\phi, x, \epsilon)$

$\frac{\partial f}{\partial z}$

$\frac{\partial f}{\partial \phi}$

$\epsilon \sim \mathcal{N}(0,1)$
VAEs: Latent perturbation

Slowly increase or decrease a **single latent variable**
Keep all other variables fixed

Different dimensions of z encodes **different interpretable latent features**

Head pose
VAEs: Latent perturbation

Ideally, we want latent variables that are uncorrelated with each other

Enforce diagonal prior on the latent variables to encourage independence

Disentanglement
Why generative models? Debiasing

Capable of uncovering **underlying latent variables** in a dataset

Homogeneous skin color, pose VS Diverse skin color, pose, illumination

How can we use latent distributions to create fair and representative datasets?
Mitigating bias through learned latent structure

Learn latent structure
Mitigating bias through learned latent structure

Estimate distribution

Homogeneous skin color; pose

Diverse skin color; pose, illumination
Mitigating bias through learned latent structure

3. Adaptively resample data
Mitigating bias through learned latent structure

Learn from fair data distribution

Latent distributions used to create fair and representative dataset
VAE summary

1. Compress representation of world to something we can use to learn
VAE summary

1. Compress representation of world to something we can use to learn
2. Reconstruction allows for unsupervised learning (no labels!)
VAE summary

1. Compress representation of world to something we can use to learn
2. Reconstruction allows for unsupervised learning (no labels!)
3. Reparameterization trick to train end-to-end
VAE summary

1. Compress representation of world to something we can use to learn
2. Reconstruction allows for unsupervised learning (no labels!)
3. Reparameterization trick to train end-to-end
4. Interpret hidden latent variables using perturbation
VAE summary

1. Compress representation of world to something we can use to learn
2. Reconstruction allows for unsupervised learning (no labels!)
3. Reparameterization trick to train end-to-end
4. Interpret hidden latent variables using perturbation
5. Generating new examples
Generative Adversarial Networks (GANs)
What if we just want to sample?

Idea: don’t explicitly model density, and instead just sample to generate new instances.

Problem: want to sample from complex distribution – can’t do this directly!

Solution: sample from something simple (noise), learn a transformation to the training distribution.
Generative Adversarial Networks (GANs) are a way to make a generative model by having two neural networks compete with each other.

The **discriminator** tries to identify real data from fakes created by the generator.

The **generator** turns noise into an imitation of the data to try to trick the discriminator.
Intuition behind GANs

Generator starts from noise to try to create an imitation of the data.

![Diagram showing Generator and Fake data]
Intuition behind GANs

Discriminator looks at both real data and fake data created by the generator.
Intuition behind GANs

Discriminator looks at both real data and fake data created by the generator.

![Diagram of Discriminator and Generator](image-url)

- **Real data**
- **Fake data**
Intuition behind GANs

Discriminator tries to predict what's real and what's fake.

\[P(\text{real}) = 1 \]

Real data Fake data
Intuition behind GANs

Discriminator tries to predict what's real and what's fake.

\[P(\text{real}) = 1 \]

- Real data
- Fake data

Discriminator

Generator
Intuition behind GANs

Discriminator tries to predict what's real and what's fake.

\[
P(\text{real}) = 1
\]

Real data Fake data
Intuition behind GANs

Discriminator tries to predict what’s real and what’s fake.

\[P(\text{real}) = 1 \]

- **Real data**
- **Fake data**
Intuition behind GANs

Generator tries to improve its imitation of the data.

$P(\text{real}) = 1$

Real data Fake data
Intuition behind GANs

Generator tries to improve its imitation of the data.

\[P(\text{real}) = 1 \]

Real data Fake data
Intuition behind GANs

Generator tries to improve its imitation of the data.

\[
P(\text{real}) = 1
\]

- **Real data**
- **Fake data**
Intuition behind GANs

Discriminator tries to predict what's real and what's fake.

\[P(\text{real}) = 1 \]

Real data **Fake data**
Intuition behind GANs

Discriminator tries to predict what's real and what's fake.

- $P(\text{real}) = 1$

Real data □ □ □ □ □ □ □ □ □

Fake data □ □ □ □ □ □ □ □ □
Intuition behind GANs

Discriminator tries to predict what's real and what's fake.

\[P(\text{real}) = 1 \]

- Real data
- Fake data
Intuition behind GANs

Discriminator tries to predict what's real and what's fake.

- $P(\text{real}) = 1$

Discriminator

- Real data
- Fake data
Intuition behind GANs

Generator tries to improve its imitation of the data.

$P(\text{real}) = 1$

- Real data
- Fake data
Intuition behind GANs

Generator tries to improve its imitation of the data.

Discriminator

\[P(\text{real}) = 1 \]

Real data Fake data
Intuition behind GANs

Generator tries to improve its imitation of the data.

Discriminator

\[P(\text{real}) = 1 \]

Generator

- Real data
- Fake data
Intuition behind GANs

Discriminator tries to identify real data from fakes created by the generator. **Generator** tries to create imitations of data to trick the discriminator.

\[P(\text{real}) = 1 \]

- Real data
- Fake data
Generating new data with GANs

After training, use generator network to create new data that’s never been seen before.
GANs: Recent Advances
Progressive growing of GANs (NVIDIA)
Progressive growing of GANs: results
CycleGAN: domain transformation

CycleGAN learns transformations across domains with unpaired data.
CycleGAN: Transforming speech
Deep Generative Modeling: Summary

Autoencoders and Variational Autoencoders (VAEs)

Learn lower-dimensional latent space and **sample** to generate input reconstructions

Generative Adversarial Networks (GANs)

Competing **generator** and **discriminator** networks
6.S191: Introduction to Deep Learning
Lab 2: Computer Vision

Link to download labs:
http://introtodeeplearning.com/#schedule

1. Open the lab in Google Colab
2. Start executing code blocks and filling in the #TODOs
3. Need help? Find a TA or come to the front!!
Training GANs

Discriminator tries to identify real data from fakes created by the generator.
Generator tries to create imitations of data to trick the discriminator.

Train GAN jointly via minimax game:

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{data}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log \left(1 - D_{\theta_d}(G_{\theta_g}(z)) \right) \right]
\]

Discriminator wants to maximize objective s.t. \(D(x) \) close to 1, \(D(G(z)) \) close to 0.
Generator wants to minimize objective s.t. \(D(G(z)) \) close to 1.
Why GANs?
Why GANs?

more traditional max-likelihood approach

GAN