Limitations and New Frontiers

Ava Soleimany

MIT 6.S191

January 29, 2020
T-shirts! Today!
Lecture Schedule

- Mon Jan 27 – Fri Jan 31
- 1:00 pm – 4:00pm, 32-123
- Lecture + Lab Breakdown
- Graded P/D/F; 3 Units
- 1 Final Assignment
- Lab submissions: Thursday 1/30, 5pm
Final Class Project

Option 1: Proposal Presentation
- At least 1 registered student to be prize eligible
- Present a novel deep learning research idea or application
- 3 minutes (strict)
- Presentations on Friday, Jan 31
- Submit groups by Wednesday 11:59pm to be eligible
- Submit slide by Thursday 11:59pm to be eligible
- Instructions: shorturl.at/wxBK7

- Judged by a panel of judges
- Top winners are awarded:
 - 3x NVIDIA 2080 Ti ($4000)
 - 4x Google Home ($400)
 - 3x Display Monitors ($300)
 - 3x SSD 1TB ($200)
Final Class Project

Option 1: Proposal Presentation
- At least 1+ registered student to be prize eligible
- Present a novel deep learning research idea or application
- 3 minutes (strict)
- Presentations on **Friday, Jan 31**
- Submit groups by **Wednesday 11:59pm** to be eligible
- Submit slide by **Thursday 11:59pm** to be eligible
- Instructions: shorturl.at/wxBK7

Proposal Logistics
- Prepare slides on Google Slides
- **Group submit by today 11:59pm:** shorturl.at/mxBWZ
- In class project work: **Thu, Jan 30**
- Slide submit by **Thu 11:59 pm:** shorturl.at/pqCL9
- Presentations on **Friday, Jan 31**
Option 1: Proposal Presentation

- At least 1+ registered student to be prize eligible
- Present a novel deep learning research idea or application
- 3 minutes (strict)
- Presentations on Friday, Jan 31
- Submit groups by Wednesday 11:59pm to be eligible
- Submit slide by Thursday 11:59pm to be eligible
- Instructions: shorturl.at/wxBK7

Option 2: Write a 1-page review of a deep learning paper

- Grade is based on clarity of writing and technical communication of main ideas
- Due Friday Jan 31 1:00pm (before lecture) by email
Thursday: AI for Human Creativity + Robot Learning

David Cox,
IBM Director,
MIT-IBM Watson AI Lab
Towards Robust AI

IBM Research

Animesh Garg,
U Toronto,
NVIDIA
Robot Learning

Lab + Final Project Work
Ask us questions!
Open office hours!
Work with group members!
Friday: Neural Rendering + Learning to Smell
Project Proposals + Awards!

Chuan Li,
CSO,
Lambda Labs
Neural Rendering

Lambda

Project Proposals!
Judging and Awards!

Alex Wiltschko,
Senior Research Scientist,
Google Brain
Machine Learning for Scent

Google

Pizza Celebration!
So far in 6.S191...
The Rise of Deep Learning
So far in 6.S191...

Data
- Signals
- Images
- Sensors

...
So far in 6.S191...
So far in 6.S191…

Data
- Signals
- Images
- Sensors

Decision
- Prediction
- Detection
- Action
Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.
Power of Neural Nets

Universal Approximation Theorem

A feedforward network with a single layer is sufficient to approximate, to an arbitrary precision, any continuous function.

Caveats:

- The number of hidden units may be infeasibly large
- The resulting model may not generalize
Artificial Intelligence “Hype”: Historical Perspective
Limitations
Rethinking Generalization

“Understanding Deep Neural Networks Requires Rethinking Generalization”

dog banana dog tree
Rethinking Generalization

“Understanding Deep Neural Networks Requires Rethinking Generalization”
Rethinking Generalization

“Understanding Deep Neural Networks Requires Rethinking Generalization”
Rethinking Generalization

“Understanding Deep Neural Networks Requires Rethinking Generalization”
Capacity of Deep Neural Networks

- original labels
- randomization
- completely random

Accuracy:
- Training Set
- Testing Set

0% to 100%
Capacity of Deep Neural Networks

Modern deep networks can perfectly fit to random data

Accuracy

0% 100%

original labels randomization completely random

Training Set Testing Set
Neural Networks as Function Approximators

Neural networks are excellent function approximators
Neural Networks as Function Approximators

Neural networks are excellent function approximators.
Neural Networks as Function Approximators

Neural networks are excellent function approximators
Neural Networks as Function Approximators

Neural networks are excellent function approximators
Neural Networks as Function Approximators

Neural networks are excellent function approximators.
Neural Networks as Function Approximators

Neural networks are excellent function approximators
...when they have training data

How do we know when our network doesn't know?
Adversarial Attacks on Neural Networks

Original image
Temple (97%)

Perturbations

Adversarial example
Ostrich (98%)
Adversarial Attacks on Neural Networks

Original image
Temple (97%)

Perturbations

Adversarial example
Ostrich (98%)
Adversarial Attacks on Neural Networks

Remember:

We train our networks with gradient descent

\[W \leftarrow W - \eta \frac{\partial J(W, x, y)}{\partial W} \]

“How does a small change in weights decrease our loss”
Adversarial Attacks on Neural Networks

Remember:
We train our networks with gradient descent

\[W \leftarrow W - \eta \frac{\partial J(W, x, y)}{\partial W} \]

“How does a small change in weights decrease our loss”
Adversarial Attacks on Neural Networks

Remember:
We train our networks with gradient descent

\[W \leftarrow W - \eta \frac{\partial J(W, x, y)}{\partial W} \]

“How does a small change in weights decrease our loss”
Adversarial Attacks on Neural Networks

Adversarial Image:
Modify image to increase error

\[x \leftarrow x + \eta \frac{\partial J(W, x, y)}{\partial x} \]

“How does a small change in the input increase our loss”
Adversarial Attacks on Neural Networks

Adversarial Image:
Modify image to increase error

$$x \leftarrow x + \eta \frac{\partial J(W, x, y)}{\partial x}$$

“How does a small change in the input increase our loss”
Adversarial Attacks on Neural Networks

Adversarial Image:
Modify image to increase error

\[x \leftarrow x + \eta \frac{\partial J(W, x, y)}{\partial x} \]

Fix your weights \(\theta \), and true label \(y \)

“How does a small change in the input increase our loss”
Synthesizing Robust Adversarial Examples

- Green: classified as turtle
- Red: classified as rifle
- Black: classified as other
Neural Network Limitations…

- Very **data hungry** (e.g., often millions of examples)
- **Computationally intensive** to train and deploy (tractably requires GPUs)
- Easily fooled by **adversarial examples**
- Can be subject to **algorithmic bias**
- Difficult to **encode structure** and prior knowledge during learning
- Poor at **representing uncertainty** (how do you know what the model knows?)
- Uninterpretable **black boxes**, difficult to trust
- **Finicky to optimize**: non-convex, choice of architecture, learning parameters
- Often require **expert knowledge** to design, fine-tune architectures
Neural Network Limitations...

- Very data hungry (e.g., often millions of examples)
- Computationally intensive to train and deploy (tractably requires GPUs)
- Easily fooled by adversarial examples
- Can be subject to algorithmic bias

- Difficult to encode structure and prior knowledge during learning
- Poor at representing uncertainty (how do you know what the model knows?)
- Uninterpretable black boxes, difficult to trust

- Finicky to optimize: non-convex, choice of architecture, learning parameters
- Often require expert knowledge to design, fine tune architectures
New Frontiers I: Encoding Structure into Deep Learning
CNNs: Using Spatial Structure

1) Apply a set of weights to extract **local features**

2) Use **multiple filters** to extract different features

3) **Spatially share** parameters of each filter
Graphs as a Structure for Representing Data

- State Machines
- Biological Networks
- Social Networks
- Molecules
- Mobility & Transport
Graph Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)
Graph Convolutional Networks

Convolutional Networks
Graph Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)
Graph Convolutional Networks

Convolutional Networks
Graph Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)
Graph Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)
Graph Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)
Graph Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)
Graph Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)
Graph Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)
Graph Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)
Graph Convolutional Networks

Convolutional Networks

Graph Convolutional Networks (GCNs)

Friday: Graph neural networks for odor prediction
Alex Wiltschko, Google Brain
Learning From 3D Data

Point clouds are **unordered sets** with **spatial dependence** between points.

- **Classification**
 - mug?
 - table?
 - car?
- **Part Segmentation**
- **Semantic Segmentation**
Extending Graph CNNs to Pointclouds

Capture local geometric features of point clouds while maintaining order invariance
New Frontiers II:
Uncertainty Estimation & Bayesian Deep Learning
Why care about uncertainty?
Why care about uncertainty?

We need **uncertainty** metrics to assess the network’s **confidence** in its predictions.

Remember: \(P(\text{cat}) + P(\text{dog}) = 1 \)
Bayesian Deep Learning for Uncertainty

Network tries to learn output, Y, directly from raw data, X

Find mapping, f, parameterized by weights W such that

$$\min \mathcal{L}(Y, f(X; W))$$

Bayesian neural networks aim to learn a posterior over weights, $P(W|X, Y)$:

$$P(W|X, Y) = \frac{P(Y|X, W)P(W)}{P(Y|X)}$$
Bayesian Deep Learning for Uncertainty

Network tries to learn output, Y, directly from raw data, X

Find mapping, f, parameterized by weights W such that

$$\min \mathcal{L}(Y, f(X; W))$$

Bayesian neural networks aim to learn a posterior over weights, $P(W|X,Y)$:

$$P(W|X,Y) = \frac{P(Y|X,W)P(W)}{P(Y|X)}$$

Intractable!
Dropout for Uncertainty

Evaluate T stochastic forward passes through the network $\{W_t\}_{t=1}^T$

Dropout as a form of stochastic sampling $z_{w,t} \sim \text{Bernoulli}(p) \quad \forall \ w \in W$

Unregularized Kernel W

Bernoulli Dropout $z_{w,t}$

Stochastic Sampled W_t

$$\mathbb{E}(\bar{Y}|X) = \frac{1}{T} \sum_{t=1}^{T} f(X|W_t)$$

$$\text{Var}(\bar{Y}|X) = \frac{1}{T} \sum_{t=1}^{T} f(X)^2 - \mathbb{E}(\bar{Y}|X)^2$$
Model Uncertainty Application

Input Image Predicted Depth Model Uncertainty
Uncertainty Estimation via Ensembling

Model ensembling for estimating uncertainty
Evidential Deep Learning

Directly learn the underlying uncertainties using *evidential distributions*

Competing loss training:

- Maximize model fit
- Minimize evidence on errors

![Diagram showing determinstic and evidential regression](image)
Evidential Deep Learning

Directly learn the underlying uncertainties using **evidential distributions**

Competing loss training:

- Maximize model fit
- Minimize evidence on errors

Robustness to adversarial perturbation
Multi-Task Learning Using Uncertainty
Multi-Task Learning Using Uncertainty
New Frontiers III: Automated Machine Learning
Motivation: Automated Machine Learning

Standard deep neural networks are optimized for a single task

Complexity of models increases
Greater need for specialized engineers

Often require expert knowledge to build an architecture for a given task
Motivation: Automated Machine Learning

Standard deep neural networks are optimized for a single task

Complexity of models increases

Greater need for specialized engineers

Often require expert knowledge to build an architecture for a given task

Build a learning algorithm that learns which model to use to solve a given problem
Motivation: Automated Machine Learning

Standard deep neural networks are optimized for a single task

Complexity of models increases Greater need for specialized engineers

Often require expert knowledge to build an architecture for a given task

Build a learning algorithm that learns which model to use to solve a given problem

AutoML
Automated Machine Learning (AutoML)

Sample architecture A with probability \(p \)

The controller (RNN)

Trains a child network with architecture A to get accuracy \(R \)

Compute gradient of \(p \) and scale it by \(R \) to update the controller
AutoML: Model Controller

At each step, the model samples a brand new network
AutoML: The Child Network

Training Data → Sampled network from RNN → Prediction

Compute final accuracy on this dataset. Update RNN controller based on the accuracy of the child network after training.
AutoML on the Cloud

AutoML VisionBETA
Start with as little as a few dozen photographic samples, and Cloud AutoML will do the rest.

AutoML Natural LanguageBETA
Automatically predict text categories through either single or multi-label classification.

AutoML TranslationBETA
Upload translated language pairs to train your own custom model.
AutoML Spawns a Powerful Idea

- Design an AI algorithm that can build new models capable of solving a task
- Reduces the need for experienced engineers to design the networks
- Makes deep learning more accessible to the public

Connections and distinctions between artificial and human intelligence
6.8191: Introduction to Deep Learning

Lab 3: Reinforcement Learning

Link to download labs:
http://introtodeeplearning.com/#schedule

1. Open the lab in Google Colab
2. Start executing code blocks and filling in the #TODOs
3. Need help? Find a TA or come to the front!!