Deep Generative Models
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Human: i am seeing an error related to vpn
Machine: what is the error message that you are
getting when connecting to vpn using network

Learning to generate

Human: connection refused or something like

that
I Machine: may i know the version of network
mag €S connect you connect ?

Human: i am not sure i know that
Machine: is the network connect prompting for
S peeCh any user certificate
Machine: ?
. Human: yes
H a ndwrltl ng Machine: are you at home or at work at the mo-
ment ?
Machine: office ?
Language Human: i am at home
Machine: try this
Machine: goto <URL> page and enter your
name and password
Human: done
Machine: try logging in with <NAME> and
check if its working fine now
Human: yes , now it works !

MIT 6.S191 | Intro to Deep Learning | IAP 2017 Vinyals et al. 2015



Idea: learn to understand data through generation



Generative models for classification
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Generative models for classification
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Generative models for representation learning

InfoGAN (Digit type)
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Generative models for simulation, planning, reasoning

£ Ohetal 2015



Setup

Discriminative model: given n examples (m(i) : y(i))
learn h: X — Y

Generative model: given n examples :E(i), recover p(z)
Maximum-likelihood objective: | [ po(z) =) logpy(z)
i i

Generation: Sampling from py(z)



Gaussian Mixture Model
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Attempt 1: learn py () directly



Attempt 1: learn py () directly
Problem: We need to enforce that/pg(aj)daj =1

T

For most models (i.e. neural networks) this integral is
intractable.



Autoregressive Models

Factorize dimension-wise:

p(il?) — p(wl)p(w2 ‘2131) .- p(xn ’xla <oy mn—l)

Build a “next-step prediction” model p(acn |ac1, ceey wn_l)

If x is discrete, network outputs a probability for each possible value

If X is continuous, network outputs parameters of a simple distribution
(e.g. Gaussian mean and variance)... or just discretize!

Generation: sample one step at a time, conditioned on all previous steps



RNNs for Autoregressive Language Modeling
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PixelRNN (van der Oord et al. 2016)

Autoregressive RNN
over pixels in an image

Models pixels as
discrete-valued (256-
way softmax at each
step)




Solution 1: Autoregressive models

Autoregressive models are powerful density estimators, but:
Sequential generation can be slow

Doesn't closely reflect the “true” generating process

Tends to emphasize details over global data

Not very good for learning representations



Autoencoders for Representation Learning

Classifier Loss
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Autoencoders for Representation Learning
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Autoencoders for Representation Learning

Encoder Decoder

Latent Representation




Autoencoders for Representation Learning

Encoder Decoder

Latent Representation
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Autoencoders for Representation Learning

Reconstruction loss forces hidden layer to represent
information about the input

Bottleneck hidden layer forces network to learn a
compressed latent representation



Idea: compression as implicit generative modeling



Variational Autoencoders (VAES)

Generative extension of autoencoders which allow sampling and
estimating probabilities

“Latent variables” with fixed prior distribution p(z)
Probabilistic encoder and decoder: q(z|z), p(x|z)

Trained to maximize a lower bound on log-probability:

logp(z) > E,4(z|z) log p(z|2) + log p(2) — log g(2)]



Tom White 2016



Problems with VAEs

Encoder and decoder’s output distributions are typically
limited (diagonal-covariance Gaussian or similar)

This prevents the model from capturing fine details and leads
to blurry generations



Andrej Karpathy 2015



Problems with VAEs

Encoder and decoder’s output distributions are typically
limited (diagonal-covariance Gaussian or similar)

This prevents the model from capturing fine details and leads
to blurry generations

Solution: use autoregressive networks in encoder and
decoder






Generative Adversarial Networks (GANs) are a way to

make a generative model by having two neural networks
compete with each other.
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The discriminator tries to
distinguish genuine data
from forgeries created by

/\ the generator.

(Xreal (data J ( X fake

The generator turns
random noise into
\ G / immitations of the data,

in an attempt to fool the
( Z moise) ) discriminator.

Chris Olah 2016
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We have many orders of magnitude more data than labels;
unsupervised learning is important.



Generating Implausible Scenes from Captions
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A stop sign is flying in A herd of elephants fly- A toilet seat sits open in A person skiing on sand
blue skies. ing in the blue skies. the grass field. clad vast desert.

Mansimov et al. 2015
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