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Deep learning success in single modalities

Super Bowl 50 was an American football game to determine the champion of the
Mational Football League {NFL) for the ms season. The American Football
Conference (AFC) champion Denver Broncos defeated the National Football
Conference (MFC) champion Carolina Panthers 24-10 to earn their third Super
Bowl title. The game was played on February 7, 2016, at Levi's Stadium in the
San Francisco Bay Area at Santa Clara, California. As this was the 50th Super
Bowl, the league emphasized the "golden anniversary” with various gold-themed
initiatives, as well as temporarily suspending the tradition of naming each Super
Bowl game with Roman numerals {under which the game would have been
known as "Super Bowl L"), so that the logo could prominently feature the Arabic
numerals 50.

Super Bowl 50 decided the NFL champion for what season?
Ground Truth Answers: 2015 the 2015 season 2015
Prediction: 2015
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What is multimodal learning?

e |n general, learning that involves multiple modalities
e This can manifest itself in different ways:

o Input is one modality, output is another

o Multiple modalities are learned jointly

o One modality assists in the learning of another
O



Data is usually a collection of modalities
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Data is usually a collection of modalities ﬁ
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Data is usually a collection of modalities
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Why is multimodal learning hard?

e Different representations S
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Why is multimodal learning hard?

e Different representations

e Noisy and missing data
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How can we solve these problems?

e Combine separate models for single modalities at a higher
level

e Pre-train models on single-modality data

e How do we combine these models? Embeddings!
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Pretraining

e Initialize with the weights from another
network (instead of random)

Layer 2

e Even if the task is different, low-level
features will still be useful, such as edge
and shape filters for images

e Example: take the first 5 convolutional
layers from a network trained on the
ImageNet classification task

Layer 4 ; Layer 5
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Embeddings

e A way to represent data
e In deep learning, this is usually a high-dimensional vector

e A neural network can take a piece of data and create a
corresponding vector in an embedding space

e A neural network can take a embedding vector as an input

e Example: word embeddings
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Word embeddings

e A word embedding: word — high-dimensional vector

e Interesting properties
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Embeddings

e \We can use embeddings to switch between modalities!

e In sequence modeling, we saw a sentence embedding to switch
between languages for translation

e Similarly, we can have embeddings for images, sound, etc. that
allow us to transfer meaning and concepts across modalities
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Talk outline

What is multimodal learning and what are the challenges?
Flickr example: joint learning of images and tags
Image captioning: generating sentences from images
SoundNet: learning sound representation from videos



Flickr tagging: task
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Flickr tagging: task

Sunset  Pacific Ocean
Nikon D40  Baker Beach
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e 1 million images from flickr
e 25,000 have tags
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Flickr tagging: model
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Flickr tagging: model
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Flickr tagging: example outputs

Given Generated Given Generated

insect, butterfly, insects,
bug, butterflies,
lepidoptera

dog, cat, pet, kitten,

puppy, ginger, tongue,
kitty, dogs, furry

sea, france, boat, mer, graffiti, streetart, stencil,
beach, river, bretagne, sticker, urbanart, graff,
plage, brittany sanfrancisco
L3
H

portrait, child, kid,
ritratto, kids, children,
boy, cute, boys, italy

canada, nature,
sunrise, ontario, fog,
mist, bc, morning

|
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Flickr tagging: example outputs

Given Generated

portrait, women, army, soldier,
mother, postcard, soldiers

obama, barackobama, election,
politics, president, hope, change,
sanfrancisco, convention, rally

water, glass, beer, bottle,
drink, wine, bubbles, splash,
drops, drop
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Flickr tagging: visualization

Given Retrieved

water, red,
sunset S
o v G

nature, flower,
red, green

blue, green,
yellow, colors

chocolate, cake
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Flickr tagging

Nearest Images
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Talk outline

What is multimodal learning and what are the challenges?
Flickr example: joint learning of images and tags

Image captioning: generating sentences from images
SoundNet: learning sound representation from videos



Example: image captioning

Vision Language
Deep CNN Generating
RNN

36

A group of people
shopping at an
outdoor market.

There are many
vegetables at the
fruit stand.
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Example: image captioning

—>

I I

young

girl
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Human: A young girl asleep on
the sofa cuddling a stuffed
bear.

Computer: A close up of a child
holding a stuffed animal.

Computer: A baby is asleep
next to a teddy bear.



Human: A close up of two
bananas with bottles in the
background.

Computer: A bunch of bananas
and a bottle of wine.




Human: A view of inside of a car
where a cat is laying down.

Computer: A cat sitting on top
of a black car.




Human: A green monster kite
soaring in a sunny sky.

Computer: A man flying through
the air while riding a
snowboard.




Caption model for neural storytelling

We were barely able to catch the breeze at
the beach, and it felt as if someone stepped
out of my mind. She was in love with him for
the first time in months, so she had no
intention of escaping. The sun had risen
from the ocean, making her feel more alive
than normal. She's beautiful, but the truth is
that | don't know what to do. The sun was
just starting to fade away, leaving people
scattered around the Atlantic Ocean. I'd
seen the men in his life, who guided me at
the beach once more.

Jamie Kiros, github.com/ryankiros/neural-storyteller
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SoundNet

e Idea: learn a sound representation from unlabeled video

e \We have good vision models that can provide information about unlabeled
videos

e Can we train a network that takes sound as an input and learns object and

scene information?
e This sound representation could then be used for sound classification tasks
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SoundNet training
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SoundNet training Loss for the sound CNN:
Drr(9(y) || f(x:0))
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SoundNet training

Unlabeled
Video

RGB Frames r ImageNet CNN

Loss for the sound CNN:

Drr(g(y) || f(x;0))

Visual Recognition Networks

jﬁﬁﬁ & Object Distribution
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Raw
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conviPooll
Input

pool2 conv3
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L jﬁljﬁ 9 Scene Distribution

Places CNN

corw?

conve

15
convs Feet

convd

SoundNet Architecture
Deep 1D Convolutional Network

X is the raw waveform
y is the RGB frames

g(y) is the object or
scene distribution

f(x;0) is the output from
the sound CNN
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SoundNet visualization
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SoundNet visualization

Visual Recognition Networks
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SoundNet: visualization of hidden units

https://projects.csail.mit.edu/soundnet/

Bird Chirps
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Conclusion

e Multimodal tasks are hard
o Differences in data representation
o Noisy and missing data
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Conclusion

e Multimodal tasks are hard
o Differences in data representation
o Noisy and missing data
e What types of models work well?
o Composition of unimodal models
o  Pretraining unimodally
e Examples of multimodal tasks

o Model two modalities jointly (Flickr tagging)
o Generate one modality from another (image captioning)
o Use one modality as labels for the other (SoundNet)
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