
Institut 
des algorithmes 
d’apprentissage 

de Montréal

Deep Generative Models
Aaron Courville 

MILA, Université de Montréal 

6.S191: Introduction to Deep Learning

MIT, Jan 30th, 2018
1



• Generative models take training samples from some data 
distribution and learn a model that represents that distribution. 

• Density estimation: 

• Sample generation:

Generative modeling

(Goodfellow 2016)

Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples

Figure 1: Some generative models perform density estimation. These models take a
training set of examples drawn from an unknown data-generating distribution p

data

and return an estimate of that distribution. The estimate p

model

can be evaluated for
a particular value of x to obtain an estimate p

model

(x) of the true density p

model

(x).
This figure illustrates the process for a collection of samples of one-dimensional data
and a Gaussian model.

(Goodfellow 2016)

Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples
Figure 2: Some generative models are able to generate samples from the model distri-
bution. In this illustration of the process, we show samples from the ImageNet (Deng
et al., 2009, 2010; Russakovsky et al., 2014) dataset. An ideal generative model would
be able to train on examples as shown on the left and then create more examples from
the same distribution as shown on the right. At present, generative models are not yet
advanced enough to do this correctly for ImageNet, so for demonstration purposes this
figure uses actual ImageNet data to illustrate what an ideal generative model would
produce.

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.key

The video was recorded by the NIPS foundation and should be made avail-
able at a later date.

Generative adversarial networks are an example of generative models. The
term “generative model” is used in many di↵erent ways. In this tutorial, the
term refers to any model that takes a training set, consisting of samples drawn
from a distribution p

data

, and learns to represent an estimate of that distribution
somehow. The result is a probability distribution p

model

. In some cases, the
model estimates p

model

explicitly, as shown in figure 1. In other cases, the
model is only able to generate samples from p

model

, as shown in figure 2. Some
models are able to do both. GANs focus primarily on sample generation, though
it is possible to design GANs that can do both.

2

images taken from Goodfellow (2017)

(Goodfellow 2016)

Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples

Figure 1: Some generative models perform density estimation. These models take a
training set of examples drawn from an unknown data-generating distribution p

data

and return an estimate of that distribution. The estimate p

model

can be evaluated for
a particular value of x to obtain an estimate p

model

(x) of the true density p

model

(x).
This figure illustrates the process for a collection of samples of one-dimensional data
and a Gaussian model.

(Goodfellow 2016)

Generative Modeling
• Density estimation 

• Sample generation

Training examples Model samples
Figure 2: Some generative models are able to generate samples from the model distri-
bution. In this illustration of the process, we show samples from the ImageNet (Deng
et al., 2009, 2010; Russakovsky et al., 2014) dataset. An ideal generative model would
be able to train on examples as shown on the left and then create more examples from
the same distribution as shown on the right. At present, generative models are not yet
advanced enough to do this correctly for ImageNet, so for demonstration purposes this
figure uses actual ImageNet data to illustrate what an ideal generative model would
produce.

http://www.iangoodfellow.com/slides/2016-12-04-NIPS.key

The video was recorded by the NIPS foundation and should be made avail-
able at a later date.

Generative adversarial networks are an example of generative models. The
term “generative model” is used in many di↵erent ways. In this tutorial, the
term refers to any model that takes a training set, consisting of samples drawn
from a distribution p

data

, and learns to represent an estimate of that distribution
somehow. The result is a probability distribution p

model

. In some cases, the
model estimates p

model

explicitly, as shown in figure 1. In other cases, the
model is only able to generate samples from p

model

, as shown in figure 2. Some
models are able to do both. GANs focus primarily on sample generation, though
it is possible to design GANs that can do both.

2

2



• Many tasks require structured output 

- Eg. Machine translation

Why generative models?

image credit: Adam Geitgey blog (2016) Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences



Why Generative Models? Outlier detection
cars wheelchairs

✘✘ ✘

• Large-scale deployment of CNN-
based perception systems is 
becoming a reality. 

• How do we detect when we 
encounter something new or rare 
(i.e. not appearing in the training 
data)? 

• Goal: detect these outliers  
(anomalies) to avoid dangerous 
misclassification. 

• Strategy: Leverage generative 
models of the training distribution 
to detect outliers. Outlier!



Why Generative Models? Generation for Simulation

• Supports Reinforcement Learning for Robotics:  Make simulations sufficiently 
realistic that learned policies can readily transfer to real-world application

5

Photo from IEEE Spectrum

Generative model



Autoregressive models 
• Deep NADE, PixelRNN, PixelCNN, WaveNet, Video Pixel 

Network, etc. 

Latent variable models 
• Variational Auto encoders 

• Generative Adversarial Networks

Deep Generative Models: Outline

6

our focus today



Latent Variable Models
• The Variational Autoencoder model: 

- Kingma and Welling, Auto-Encoding Variational Bayes, International Conference on Learning 
Representations (ICLR) 2014. 

- Rezende, Mohamed and Wierstra, Stochastic back-propagation and variational inference in deep 
latent Gaussian models. ICML 2014.

z2

z1 x1
x3

x2

g

Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007 7



Latent Variable Models

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p�(x|z) with the learned parameters �.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p�(z) = N (0, I) and the
posterior approximation q⇥(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and ⇥
denote the variational mean and s.d. evaluated at datapoint i, and let µj and ⇥j simply denote the
j-th element of these vectors. Then:

⇥
q�(z) log p(z) dz =

⇥
N (z;µ,⇥2) logN (z;0, I) dz

= �J

2
log(2�)� 1

2

J�

j=1

(µ2
j + ⇥2

j )

10

z

z

MNIST:

(a) Learned Frey Face manifold (b) Learned MNIST manifold

Figure 4: Visualisations of learned data manifold for generative models with two-dimensional latent
space, learned with AEVB. Since the prior of the latent space is Gaussian, linearly spaced coor-
dinates on the unit square were transformed through the inverse CDF of the Gaussian to produce
values of the latent variables z. For each of these values z, we plotted the corresponding generative
p�(x|z) with the learned parameters �.

(a) 2-D latent space (b) 5-D latent space (c) 10-D latent space (d) 20-D latent space

Figure 5: Random samples from learned generative models of MNIST for different dimensionalities
of latent space.

B Solution of �DKL(q�(z)||p✓(z)), Gaussian case

The variational lower bound (the objective to be maximized) contains a KL term that can often be
integrated analytically. Here we give the solution when both the prior p�(z) = N (0, I) and the
posterior approximation q⇥(z|x(i)) are Gaussian. Let J be the dimensionality of z. Let µ and ⇥
denote the variational mean and s.d. evaluated at datapoint i, and let µj and ⇥j simply denote the
j-th element of these vectors. Then:

⇥
q�(z) log p(z) dz =

⇥
N (z;µ,⇥2) logN (z;0, I) dz

= �J

2
log(2�)� 1

2

J�

j=1

(µ2
j + ⇥2

j )

10

z2

z1Pose

E
xp

re
ss

io
n

Frey Faces:

z
2

z
1

x
1

x
3

x
2

g

8



Latent Variable Models

Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007

z2

z1 x1
x3

x2

g

• latent variable model:  learn a mapping from some latent variable z to a complicated 
distribution on x. 

• Can we learn to decouple the true explanatory factors underlying the data distribution? 
E.g. separate identity and expression in face images

p(z) = something simple

p(x) =

∫
p(x, z) dz where p(x, z) = p(x | z)p(z)

p(x | z) = g(z)

9



Latent Variable Models

Image from: Ward, A. D., Hamarneh, G.: 3D Surface Parameterization Using Manifold Learning for Medial Shape Representation, Conference on Image Processing, Proc. of SPIE Medical Imaging, 2007

z2

z1 x1
x3

x2

g

• latent variable model:  learn a mapping from some latent variable z to a complicated 
distribution on x. 

• Can we learn to decouple the true explanatory factors underlying the data distribution? 
E.g. separate identity and expression in face images

p(z) = something simple

p(x) =

∫
p(x, z) dz where p(x, z) = p(x | z)p(z)

p(x | z) = g(z)

z :

x :

g(z):

10



• Where does z come from? — The classic DAG problem. 
• The VAE approach: introduce an inference machine                that 

learns to approximate the posterior               . 

• Define a variational lower bound on the data likelihood: 

• What is               ?

Variational Auto-Encoder (VAE)

regularization term reconstruction term

qφ(z | x)
pθ(z | x)

pθ(x) ≥ L(θ,φ, x)

qφ(z | x)

L(�,�, x) = Eq�(z|x) [log p�(x, z)� log q�(z | x)]
= Eq�(z|x) [log p�(x | z) + log p�(z)� log q�(z | x)]
= �DKL (q�(z | x)� p�(z)) + Eq�(z|x) [log p�(x | z)]

11



VAE Inference model
• The VAE approach: introduce an inference model                 that learns to 

approximates the intractable posterior                by optimizing the variational 
lower bound:  

• We parameterize                with another neural network:

qφ(z | x)
pθ(z | x)

qφ(z | x)

L(θ,φ, x) = −DKL (qφ(z | x)∥ pθ(z)) + Eqφ(z|x) [log pθ(x | z)]

z :

x :

f(x):

qφ(z | x) = q(z; f(x,φ))
z :

x :

g(z):

pθ(x | z) = p(x; g(z, θ))

12



Reparametrization trick
• Adding a few details + one really important trick 
• Let’s consider z to be real and 
• Parametrize z  as                                        where

x :

f(z):

qφ(z | x) = N (z;µz(x),σz(x))

{ {µz(x) σz(x)

z :

g(z):

z = µz(x) + σz(x)ϵz ϵz = N (0, 1)

13

x :

Encoder: Decoder:



Training with backpropagation!
• Due to a reparametrization trick, we can simultaneously train both the generative 

model                  and the inference model                 by optimizing the variational 
bound using gradient backpropagation.

qφ(z | x)pθ(x | z)

Forward propagation

Backward propagation

z

x x̂

qφ(z | x) pθ(x | z)

Objective function: L(θ,φ, x) = −DKL (qφ(z | x)∥ pθ(z)) + Eqφ(z|x) [log pθ(x | z)]

14



vanilla VAE samples

ImageNet (small)Labelled Faces in the Wild (LFW) 15

Impressive … 
 … at the time



PixelVAE
• Uses a PixelCNN in the VAE decoder to help avoid the blurring 

caused by the standard VAE assumption of independent pixels.

PixelCNN

PixelCNN

PixelCNN

Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed Adrien Ali Taiga, 
Francesco Visin, David Vazquez, Aaron Courville. ICLR 2017



PixelVAE Samples (Gulrajani et al. 2017)

LSUN bedroom scenes (64x64) ImageNet (64x64)
17



Inverse Autoregressive Flow (Kingma et al., NIPS 2016)

• Standard VAE posteriors are factorized - limiting how well they can (marginally) fit 
the prior. 

• IAF greatly improves the flexibility of the posterior distributions, and allows for a 
much better fit between the posteriors and the prior. 

18

(a) Prior distribution (b) Posteriors in standard VAE (c) Posteriors in VAE with IAF

Figure 1: Best viewed in color. We fitted a variational auto-encoder (VAE) with a spherical Gaussian
prior, and with factorized Gaussian posteriors (b) or inverse autoregressive flow (IAF) posteriors (c)
to a toy dataset with four datapoints. Each colored cluster corresponds to the posterior distribution of
one datapoint. IAF greatly improves the flexibility of the posterior distributions, and allows for a
much better fit between the posteriors and the prior.

improving inference models including previously used normalizing flows, this transformation is well
suited to high-dimensional tensor variables, such as spatio-temporally organized variables.

We demonstrate this method by improving inference networks of deep variational auto-encoders.
In particular, we train deep variational auto-encoders with latent variables at multiple levels of the
hierarchy, where each stochastic variable is a three-dimensional tensor (a stack of featuremaps), and
demonstrate improved performance.

2 Variational Inference and Learning

Let x be a (set of) observed variable(s), z a (set of) latent variable(s) and let p(x, z) be the parametric
model of their joint distribution, called the generative model defined over the variables. Given a
dataset X = {x1

, ...,x

N} we typically wish to perform maximum marginal likelihood learning of its
parameters, i.e. to maximize

log p(X) =

NX

i=1

log p(x

(i)
), (1)

but in general this marginal likelihood is intractable to compute or differentiate directly for flexible
generative models, e.g. when components of the generative model are parameterized by neural
networks. A solution is to introduce q(z|x), a parametric inference model defined over the latent
variables, and optimize the variational lower bound on the marginal log-likelihood of each observation
x:

log p(x) � Eq(z|x) [log p(x, z)� log q(z|x)] = L(x;✓) (2)

where ✓ indicates the parameters of p and q models. Keeping in mind that Kullback-Leibler diver-
gences DKL(.) are non-negative, it’s clear that L(x;✓) is a lower bound on log p(x) since it can be
written as follows ):

L(x;✓) = log p(x)�DKL(q(z|x)||p(z|x)) (3)

There are various ways to optimize the lower bound L(x;✓); for continuous z it can be done efficiently
through a re-parameterization of q(z|x), see e.g. (Kingma and Welling, 2013; Rezende et al., 2014).

As can be seen from equation (3), maximizing L(x;✓) w.r.t. ✓ will concurrently maximize log p(x)

and minimize DKL(q(z|x)||p(z|x)). The closer DKL(q(z|x)||p(z|x)) is to 0, the closer L(x;✓) will
be to log p(x), and the better an approximation our optimization objective L(x;✓) is to our true objec-
tive log p(x). Also, minimization of DKL(q(z|x)||p(z|x)) can be a goal in itself, if we’re interested
in using q(z|x) for inference after optimization. In any case, the divergence DKL(q(z|x)||p(z|x))
is a function of our parameters through both the inference model and the generative model, and
increasing the flexibility of either is generally helpful towards our objective.

2



Another way to train a latent variable model?

z

x

z

x

?

Latent variables

Observed variables

z2

z1 x1

x3

x2

G
G

inference

19



Input noise
Z

Differentiable 
function G

x sampled 
from model

Differentiable 
function D

D tries to 
output 0

x sampled 
from data

Differentiable 
function D

D tries to 
output 1

Generative Adversarial Networks

20



G
eneratorDiscriminatorData

x̃ ∼ Pg

x ∼ Pr

G
(z
)

z ∼ p(z)

D(x)

Generative Adversarial Networks

21



• Formally, express the game between discriminator D and 
generator G with the minimax objective: 

where:  
-      is the data distribution 
-      is the model distribution implicitly defined by:  

- the generator input     is sampled from some simple 
noise distribution, (e.g. uniform or Gaussian).

GAN Objective

Pr

Pg

min
G

max
D

E
x∼Pr

[log(D(x))] + E
x̃∼Pg

[log(1−D(x̃))].

x̃ = G(z), z ∼ p(z)

z

22



GAN Theory
• Optimal (nonparametric) discriminator: 

• Under an ideal discriminator, the generator minimizes the 
Jensen-Shannon divergence between      and     .Pr Pg

JS(Pr∥Pg) = KL

(
Pr

∥∥∥∥
Pr + Pg

2

)
+KL

(
Pg

∥∥∥∥
Pr + Pg

2

)

KL(Pr∥Pg) =

∫
log

(
pr(x)

pg(x)

)
pr(x)dµ(x)

D∗(x) =
pr(x)

pr(x) + pg(x)

where
23



• The minimax objective leads to vanishing gradients as the 
discriminator saturates. 

• In practice, Goodfellow et al (2014) advocate the heuristic 
training objective: 

‣ However, this modified loss function can still misbehave in 
the presence of a good discriminator.

GAN Theory … in practice

max
D

E
x∼Pr

[log(D(x))] + E
x̃∼Pg

[log(1−D(x̃))].

max
G

E
x̃∼Pg

[log(D(x̃))].

24



GAN samples

MNIST CIFAR-10 25



Least-Squares GAN

(a) Generated by LSGANs.

(b) Generated by DCGANs (Reported in [13]).

Figure 5: Generated images on LSUN-bedroom.

where �(·) denotes the linear mapping function and y denotes the label vectors.

4 Experiments

In this section, we first present the details of datasets and implementation. Next,
we present the results of evaluating LSGANs on several scene datasets. Then we
compare the stability between LSGANs and regular GANs by two comparison
experiments. Finally, we evaluate LSGANs on a handwritten Chinese characters
dataset which contains 3740 classes.

Table 1: Statistics of the datasets.

Dataset #Samples #Categories
LSUN Bedroom 3, 033, 042 1
LSUN Church 126, 227 1
LSUN Dining 657, 571 1
LSUN Kitchen 2, 212, 277 1

LSUN Conference 229, 069 1
HWDB1.0 1,246,991 3,740

10

Xudong Mao, Qing Li†, Haoran Xie, Raymond 
Y.K. Lau and Zhen Wang, ArXiv, Feb. 2017

128x128 LSUN bedroom scenes
26



DCGAN samples (Radford, Metz and Chintala; 2016)

LSUN bedroom scenes

Under review as a conference paper at ICLR 2016

Figure 4: Top rows: Interpolation between a series of 9 random points in Z show that the space
learned has smooth transitions, with every image in the space plausibly looking like a bedroom. In
the 6th row, you see a room without a window slowly transforming into a room with a giant window.
In the 10th row, you see what appears to be a TV slowly being transformed into a window.

6.3.2 VECTOR ARITHMETIC ON FACE SAMPLES

In the context of evaluating learned representations of words (Mikolov et al., 2013) demonstrated
that simple arithmetic operations revealed rich linear structure in representation space. One canoni-
cal example demonstrated that the vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a
vector whose nearest neighbor was the vector for Queen. We investigated whether similar structure
emerges in the Z representation of our generators. We performed similar arithmetic on the Z vectors
of sets of exemplar samples for visual concepts. Experiments working on only single samples per
concept were unstable, but averaging the Z vector for three examplars showed consistent and stable
generations that semantically obeyed the arithmetic. In addition to the object manipulation shown
in (Fig. 7), we demonstrate that face pose is also modeled linearly in Z space (Fig. 8).

These demonstrations suggest interesting applications can be developed using Z representations
learned by our models. It has been previously demonstrated that conditional generative models can
learn to convincingly model object attributes like scale, rotation, and position (Dosovitskiy et al.,
2014). This is to our knowledge the first demonstration of this occurring in purely unsupervised

8

Z-space interpolations

27



x1

x2

28
Cartoon of the Image manifold:

What makes GANs special?



What makes GANs special?

x1

x2

x1

x2

more traditional max-likelihood approach GAN 29



z

x

z

x

?

Latent variables

Observed variables

z2

z1 x1

x3

x2

G
G

• Can we incorporate an inference mechanism into GANs?

30

But what about inference…



ALI / BiGAN: model diagram

D(x, z)

z ~ q(z | x)

x ~ q(x)

z ~ p(z)

x ~ p(x | z)

G
z(x

) G
x(z)

En
co

de
r D

ecoder

31

Prior distribution

Data distribution
• ALI: Vincent Dumoulin, Ishmael Belghazi, Olivier Mastropietro, Ben Poole, Alex Lamb, Martin Arjovsky (2016) 

ADVERSARIALLY LEARNED INFERENCE, arXiv:1606.00704, ICLR 2017 
• BiGAN: Donahue, Krähenbühl and Darrell (2016), ADVERSARIAL FEATURE LEARNING, arXiv:1605.09782, ICLR 2017



Hierarchical ALI

Model samples

CelebA-128X128

32



Reconstructions given z1, z2 Reconstructions given z2Re
co

n

D
at

a

Re
co

n

D
at

a
Hierarchical ALI:  CelebA-128X128

33



cycleGAN: Adversarial training of domain transformations  
(Zhu et al. ICCV 2017)

• CycleGAN learns transformations across domains with unpaired data. 

• Combines GAN loss with “cycle-consistency loss”: L1 reconstruction.

Image credits: Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using 
Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017. 



CycleGAN for unpaired data

Image credits: Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-Image Translation using 
Cycle-Consistent Adversarial Networks", in IEEE International Conference on Computer Vision (ICCV), 2017. 



1024x1024 model samples

Under review as a conference paper at ICLR 2018

Figure 5: 1024 ⇥ 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations. On the right, two
images from an earlier megapixel GAN by Marchesi (2017) show limited detail and variation.

Mao et al. (2016b) (128⇥ 128) Gulrajani et al. (2017) (128⇥ 128) Our (256⇥ 256)

Figure 6: Visual quality comparison in LSUN BEDROOM; pictures copied from the cited articles.

mentation used an adaptive minibatch size depending on the current output resolution so that the
available memory budget was optimally utilized.

In order to demonstrate that our contributions are largely orthogonal to the choice of a loss function,
we have also trained the same network using LSGAN loss instead of WGAN-GP loss. Figure 1
shows six examples of 10242 images produced using our method using LSGAN. Further details of
this setup are given in Appendix B.

6.4 LSUN RESULTS

Figure 6 shows a purely visual comparison between our solution and earlier results in LSUN BED-
ROOM. Figure 7 gives selected examples from seven very different LSUN categories at 2562. A
larger, non-curated set of results from all 30 LSUN categories is available in Appendix G, and the
video demonstrates interpolations. We are not aware of earlier results in most of these categories,
and while some categories work better than others, we feel that the overall quality is high.

6.5 CIFAR10 INCEPTION SCORES

The best inception scores for CIFAR10 (10 categories of 32 ⇥ 32 RGB images) we are aware of
are 7.90 for unsupervised and 8.87 for label conditioned setups (Grinblat et al., 2017). The large

8

PROGRESSIVE GROWING OF GANS FOR IMPROVED 
QUALITY, STABILITY, AND VARIATION (Kerras et al. from NVIDIA, 2017)

• Recent work from 
NVIDIA.  

• Improves image quality 
by growing the model 
size throughout training. 

• Samples from a model 
trained on the CelebA 
face dataset.



PROGRESSIVE GROWING OF GANS FOR IMPROVED 
QUALITY, STABILITY, AND VARIATION (Kerras et al. from NVIDIA, 2017)

Under review as a conference paper at ICLR 2018

4x4
G

D

4x4

8x8

Reals

4x4

4x4

Reals

8x8

4x4

Latent

Reals

4x4

…

Training progresses

LatentLatent

1024x1024

1024x1024

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4⇥4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here N ⇥N refers to convolutional layers operating on N ⇥ N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024⇥ 1024.

Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the
new layers smoothly. This example illustrates the transition from 16 ⇥ 16 images (a) to 32 ⇥ 32

images (c). During the transition (b) we treat the layers that operate on the higher resolution like a
residual block, whose weight ↵ increases linearly from 0 to 1. Here 2⇥ and 0.5⇥ refer to doubling
and halving the image resolution using nearest neighbor filtering and average pooling, respectively.
The toRGB represents a layer that projects feature vectors to RGB colors and fromRGB does
the reverse; both use 1 ⇥ 1 convolutions. When training the discriminator, we feed in real images
that are downscaled to match the current resolution of the network. During a resolution transition,
we interpolate between two resolutions of the real images, similarly to how the generator output
combines two resolutions.

The idea of growing GANs progressively is related to curriculum GANs (Anonymous), where the
idea is to attach multiple discriminators that operate on different spatial resolutions to a single gen-
erator, and furthermore adjust the balance between resolutions as a function of training time. That
work in turn is motivated by Durugkar et al. (2016) who use one generator and multiple discrimi-
nators concurrently, and Ghosh et al. (2017) who do the opposite with multiple generators and one
discriminator. In contrast to early work on adaptively growing networks, e.g., growing neural gas
(Fritzke, 1995) and neuro evolution of augmenting topologies (Stanley & Miikkulainen, 2002) that
grow networks greedily, we simply defer the introduction of pre-configured layers. In that sense our
approach resembles layer-wise training of autoencoders (Bengio et al., 2007).

3



Under review as a conference paper at ICLR 2018

POTTEDPLANT HORSE SOFA BUS CHURCHOUTDOOR BICYCLE TVMONITOR

Figure 7: Selection of 256⇥ 256 images generated from different LSUN categories.

difference between the two numbers is primarily caused by “ghosts” that necessarily appear between
classes in the unsupervised setting, while label conditioning can remove many such transitions.

When all of our contributions are enabled, we get 8.80 in the unsupervised setting. Appendix D
shows a representative set of result images along with a more comprehensive list of results from
earlier methods. The network and training setup were the same as for CELEBA, progression lim-
ited to 32 ⇥ 32 of course. The only customization was to the WGAN-GP’s regularization term
E
x̂⇠P

x̂

[(||r
x̂

D(

ˆ

x)||2 � �)

2
/�

2]. Gulrajani et al. (2017) used � = 1.0, which corresponds to
1-Lipschitz, but we noticed that it is in fact significantly better to prefer fast transitions (� = 750) to
minimize the ghosts. We have not tried this trick with other datasets yet.

7 DISCUSSION

While the quality of our results is generally high compared to earlier work on GANs, and the training
is stable in large resolutions, there is a long way to true photorealism. Semantic sensibility and un-
derstanding dataset-dependent constraints, such as certain objects being straight rather than curved,
leaves a lot to be desired. There is also room for improvement in the micro-structure of the images.
That said, we feel that convincing realism may now be within reach, especially in CELEBA-HQ.

REFERENCES

Anonymous. Curriculum training of generative adversarial networks for image generations. Sub-

mitted to ICLR 2018.

Martin Arjovsky and Léon Bottou. Towards principled methods for training generative adversarial
networks. In ICLR, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. CoRR, abs/1701.07875,
2017.

9

• Recent work from 
NVIDIA.  

• Improves image quality 
by growing the model 
size throughout training. 

• Conditional samples 
from a model trained on 
the LSUN dataset

PROGRESSIVE GROWING OF GANS FOR IMPROVED 
QUALITY, STABILITY, AND VARIATION (Kerras et al. from NVIDIA, 2017)



 

Model samples

Thank You! 
Questions?

39


