

Deep Sequence Modeling

Ava Soleimany MIT 6.S191 January 27, 2020

Sequences in the Wild

Sequences in the Wild

character:

6.S 191 Introduction to Deep Learning

word:

Text

"This morning I took my cat for a walk."

"This morning I took my cat for a walk."

given these words

"This morning I took my cat for a walk."

given these words

predict the next word

Idea #1: Use a Fixed Window

"This morning I took my cat for a walk."

given these predict the two words next word

Idea #1: Use a Fixed Window

"This morning I took my cat for a walk."

given these predict the two words next word

One-hot feature encoding: tells us what each word is

Problem #1: Can't Model Long-Term Dependencies

"France is where I grew up, but I now live in Boston. I speak fluent ____."

We need information from **the distant past** to accurately predict the correct word.

Idea #2: Use Entire Sequence as Set of Counts

"This morning I took my cat for a" "bag of words" [0100100...00110001]

prediction

Problem #2: Counts Don't Preserve Order

The food was good, not bad at all.

The food was bad, not good at all.

Idea #3: Use a Really Big Fixed Window

"This morning I took my cat for a walk." predict the given these next word words 1000000001001000100000010 ... this took morning prediction

Problem #3: No Parameter Sharing

[1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 ...] this morning took the cat

Each of these inputs has a separate parameter:

Problem #3: No Parameter Sharing

[1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 1 0 ...] this morning took the cat

Each of these inputs has a separate parameter:

Problem #3: No Parameter Sharing

[1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 ...] this morning took the cat

Each of these inputs has a separate parameter:

[0001000100010001000000001...] this morning

Things we learn about the sequence **won't transfer** if they appear **elsewhere** in the sequence.

Sequence Modeling: Design Criteria

To model sequences, we need to:

- 1. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence

Today: **Recurrent Neural Networks (RNNs)** as an approach to sequence modeling problems

Standard Feed-Forward Neural Network

One to One "Vanilla" neural network

Recurrent Neural Networks for Sequence Modeling

Recurrent Neural Networks for Sequence Modeling

Many to One Sentiment Classification

Many to Many Music Generation

6.S | 9 | Lab!

Recurrent Neural Networks for Sequence Modeling

Sentiment Classification

Many to Many Music Generation

6.S | 9 | Lab!

... and many other architectures and applications

Standard "Vanilla" Neural Network

Apply a **recurrence relation** at every time step to process a sequence:

Apply a **recurrence relation** at every time step to process a sequence:

Apply a **recurrence relation** at every time step to process a sequence:

Note: the same function and set of parameters are used at every time step

RNNIntuition

```
my rnn = RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden state = my rnn(word, hidden state)
next word prediction = prediction
# >>> "networks!"
```


RNN Intuition

```
my_rnn = RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden state = my rnn(word, hidden state)
next word prediction = prediction
# >>> "networks!"
```


RNN Intuition

```
my_rnn = RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden state = my rnn(word, hidden state)
next word prediction = prediction
# >>> "networks!"
```


RNN State Update and Output

RNN State Update and Output

Input Vector x_t

RNN State Update and Output

Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{hh}^T h_{t-1} + \boldsymbol{W}_{xh}^T x_t)$$

Input Vector

 x_t

RNN State Update and Output

Output Vector

$$\hat{y}_t = W_{hy}^T h_t$$

Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{hh}^T h_{t-1} + \boldsymbol{W}_{xh}^T x_t)$$

Input Vector

$$x_t$$

Represent as computational graph unrolled across time

Re-use the same weight matrices at every time step

→ Forward pass

RNNs from Scratch


```
class MyRNNCell(tf.keras.layers.Layer):
  def init (self, rnn units, input dim, output dim):
    super(MyRNNCell, self). init ()
    # Initialize weight matrices
    self.W_xh = self.add_weight([rnn_units, input_dim])
    self.W_hh = self.add_weight([rnn_units, rnn_units])
    self.W hy = self.add weight([output dim, rnn units])
    # Initialize hidden state to zeros
    self.h = tf.zeros([rnn units, 1])
  def call(self, x):
    # Update the hidden state
    self.h = tf.math.tanh( self.W hh * self.h + self.W xh * x )
    # Compute the output
    output = self.W hy * self.h
    # Return the current output and hidden state
    return output, self.h
```


RNN Implementation in TensorFlow

tf.keras.layers.SimpleRNN(rnn_units)

Backpropagation Through Time (BPTT)

Recall: Backpropagation in Feed Forward Models

Backpropagation algorithm:

- I. Take the derivative (gradient) of the loss with respect to each parameter
- 2. Shift parameters in order to minimize loss

RNNs: Backpropagation Through Time

RNNs: Backpropagation Through Time

Standard RNN Gradient Flow

Standard RNN Gradient Flow

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Standard RNN Gradient Flow: Exploding Gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Standard RNN Gradient Flow: Vanishing Gradients

Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Many values < 1: vanishing gradients

- 1. Activation function
- 2. Weight initialization
- 3. Network architecture

Why are vanishing gradients a problem?

Why are vanishing gradients a problem?

Multiply many small numbers together

Why are vanishing gradients a problem?

Multiply many **small numbers** together

Errors due to further back time steps have smaller and smaller gradients

Why are vanishing gradients a problem?

Multiply many **small numbers** together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the ____"

Why are vanishing gradients a problem?

Multiply many **small numbers** together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"I grew up in France, ... and I speak fluent____"

 x_0

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the

"I grew up in France, ... and I speak fluent____"

Trick #1: Activation Functions

Trick #2: Parameter Initialization

Initialize biases to zero

Initialize **weights** to identity matrix
$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

This helps prevent the weights from shrinking to zero.

Solution #3: Gated Cells

Idea: use a more complex recurrent unit with gates to control what information is passed through

gated cell LSTM, GRU, etc.

Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

Long Short Term Memory (LSTM) Networks

Standard RNN

In a standard RNN, repeating modules contain a simple computation node

LSTM modules contain computational blocks that control information flow

LSTM cells are able to track information throughout many timesteps

Information is added or removed through structures called gates

Gates optionally let information through, for example via a sigmoid neural net layer and pointwise multiplication

How do LSTMs work?

1) Forget 2) Store 3) Update 4) Output

I) Forget 2) Store 3) Update 4) Output LSTMs **forget irrelevant** parts of the previous state

1) Forget **2) Store** 3) Update 4) Output LSTMs **store relevant** new information into the cell state

1) Forget 2) Store **3) Update** 4) Output LSTMs **selectively update** cell state values

1) Forget 2) Store 3) Update 4) Output

The output gate controls what information is sent to the next time step

1) Forget 2) Store 3) Update 4) Output

LSTM Gradient Flow

Uninterrupted gradient flow!

LSTMs: Key Concepts

- I. Maintain a separate cell state from what is outputted
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Store relevant information from current input
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation through time with uninterrupted gradient flow

RNN Applications

Example Task: Music Generation

Input: sheet music

Output: next character in sheet music

Example Task: Sentiment Classification

Input: sequence of words

Output: probability of having positive sentiment

loss = tf.nn.softmax_cross_entropy_with_logits(y, predicted)

Example Task: Sentiment Classification

Tweet sentiment classification

The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online

introtodeeplearning.com

12:45 PM - 12 Feb 2018

Replying to @Kazuki2048

I wouldn't mind a bit of snow right now. We haven't had any in my bit of the Midlands this winter! :(

2:19 AM - 25 Jan 2019

Example Task: Machine Translation

Encoder (English)

Decoder (French)

Example Task: Machine Translation

Encoder (English)

Decoder (French)

Attention Mechanisms

Trajectory Prediction: Self-Driving Cars

Environmental Modeling

Deep Learning for Sequence Modeling: Summary

- 1. RNNs are well suited for sequence modeling tasks
- 2. Model sequences via a recurrence relation
- 3. Training RNNs with backpropagation through time
- 4. Gated cells like LSTMs let us model long-term dependencies
- 5. Models for music generation, classification, machine translation, and more

6.S191: Introduction to Deep Learning

Lab 1: Introduction to TensorFlow and Music Generation with RNNs

Link to download labs: http://introtodeeplearning.com#schedule

- I. Open the lab in Google Colab
- 2. Start executing code blocks and filling in the #TODOs
 - 3. Need help? Find a TA or come to the front!!