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Sequences in the Wild
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Sequences in the Wild
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Preadict the Next VVord



A Sequence Modeling Problem: Predict the Next Word

“This morning | took my cat for a walk.”
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A Sequence Modeling Problem: Predict the Next Word

“This morning | took my cat for a walk.”

given these words predict the
next word
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ldea #1: Use a Fixed VWindow

“This morning | took my cat for a walk.”

given these predict the
two words next word
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ldea #1: Use a Fixed VWindow

“This morning | took my cat for a walk.”

given these predict the
two words next word

One-hot feature encoding: tells us what each word Is

[1000001000]

for a
prediction
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Problem #1: Can’t Model Long-Term Dependencies

"France is where | grew up, but | now live in Boston. | speak fluent

%b

Ve need information from the distant past to accurately
predict the correct worda.

e —————— ————————

‘(gj’aime 6.5191!
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ldea #2: Use Entire Sequence as Set of Counts

“This morning | toolk my cat for a”

“bag of words”

10100100...0011000 1]

prediction
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Problem #2: Counts Don’t Preserve Order

ul

.‘ The food was good, not bad at all.
A~~~
—

V.

The food was bad, not good at all.
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ldea #3: Use a Really Big Fixed Window

“This morning | took my cat for a walk.”

given these predict the
words next word
11000000001001000100000010 ... ]
morning I took this cat
prediction
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Problem #3: No Parameter Sharing

[10000000010010001000 O 10 .. |

this morning took the

tach of these Inputs has a separate parameter:
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Problem #3: No Parameter Sharing

11000000001001000100000010 ... ]

this morning took the cat

tach of these Inputs has a separate parameter:

[0001000100010001000000001... ]

this morning
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Problem #3: No Parameter Sharing

11000000001001000100000010 ... ]

this morning took the cat

tach of these Inputs has a separate parameter:

[0001000100010001000000001... ]

this morning

Things we learn about the sequence won't transfer If
they appear elsewhere In the sequence.
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Sequence Modeling: Design Criteria

1o moael sequences, we need to:

. Handle variable-length sequences rﬂ
2. lrack long-term dependencies m
3. Maintain information about order

4.

Share parameters across the sequence

Today: Recurrent Neural Networks (RNNs) as
an approach to sequence modeling problems
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Recurrent Neural Networks (RNNs)



Standard Feed-Forward Neural Network

<

X

One to One
“Vanilla neural network
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Recurrent Neural Networks for Sequence Modeling

y
X
One to One Many to One
“Vanilla" neural network Sentiment Classification
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Recurrent Neural Networks for Sequence Modeling

y
X
One to One Many to One Many to Many
‘“\anilla" neural network Sentiment Classification Music Generation
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Recurrent Neural Networks for Sequence Modeling

Y
... and many other
architectures and
applications
X
One to One Many to One Many to Many
‘“\anilla" neural network Sentiment Classification Music Generation
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Standard ‘“Vanilla” Neural Network

output vector yt

iINnput vector Xt
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Recurrent Neural Network (RNN)

output vector yt

N

iINnput vector Xt
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Recurrent Neural Network (RNN)

output vector yt
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Recurrent Neural Network (RNN)

output vector yt Apply a recurrence relation at every
time step to process a sequence:

recurrent cell

iINnput vector Xt
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Recurrent Neural Network (RNN)

output vector yt Apply a recurrence relation at every
time step to process a sequence:

hy|=

cell state function  old state Input vector at
parameterized time step t
by VW
iINnput vector Xt
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Recurrent Neural Network (RNN)

output vector yt Apply a recurrence relation at every
time step to process a sequence:

hy|=

cell state function  old state Input vector at
| time step t
recurrent cell parameterized P
by W

Note: the same function and set of

inputvector X parameters are used at every time step
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RNN Intuition

my rnn - RNN() output vector j}t
hidden state [0, O, O, 0]

sentence ["I", "love", "recurrent”, "neural”]

RNN

prediction, hidden state - my rnn(word, hidden state) recurrent cell

for word sentence:

next word prediction - prediction

INnput vector
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my rnn - RNN() output vector j}t
hidden state [0, O, O, 0]

sentence ["I", "love", "recurrent”, "neural”]

RNN

prediction, hidden state - my rnn(word, hidden state) recurrent cell

for word sentence:

next word prediction - prediction
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output vector

RNN State Update and Output

Yt

iINnput vector

Xt
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RNN State Update and Output

output vector yt

Input Vector
Xt
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RNN State Update and Output

output vector yt

Update Hidden State
h, = tanh(W}, h,_ 1 + Wi, x,)

Input Vector
Xt

iINnput vector Xt
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RNN State Update and Output

Output Vector
A I
Yt = Whyht

output vector ft

Update Hidden State
h, = tanh(W}, h,_ 1 + Wi, x,)

Input Vector
Xt

iINnput vector Xt
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RNNSs: Computational Graph Across Time

%

Vt

II —  Represent as computational graph unrolled across time
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RNNSs: Computational Graph Across Time
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RNNSs: Computational Graph Across Time

Yt Yo V1 Y2 JLEL Yt
At X0 X1 A2 "= At
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RNNSs: Computational Graph Across Time

% %, %, %, N

Vt Yo V1 V2 = = Vt

Wxn W xh Wxh W xn

Xt X0 X1 A2 = == Xt
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RNNSs: Computational Graph Across Time

Yt Yo V1 Y2 JLEL Yt
Wn Wxh W xn Wxn
At X0 X1 A2 "= At
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RNNSs: Computational Graph Across Time
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RNNSs: Computational Graph Across Time

Re-use the same weight matrices at every time step
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RNNSs: Computational Graph Across Time

—> forward pass

At X0 X1 A2 "= At
o m | Hassachusetls 6.5191 Introduction to Deep Learning L —
III I I ;Ei::;ﬂi:gﬂ; & introtodeeplearningcom W @MITDeeplearning L/johnson/Teung C.231n. 1/2/720




RNNSs: Computational Graph Across Time

—> forward pass

At X0 X1 A2 . At
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RNNs from Scratch

class MyRNNCell(tf.keras.lavyers.Lavyer):

def 1init (self, rnn units, input dim, output dim):
super (MyRNNCell, self). init ()

output vector j}t

self . W xh self.add weight([rnn units, input dim])
self . W hh self.add weight([rnn units, rnn units])

self . W hy self.add weight([output dim, rnn units])

self.h tf.zeros([rnn units, 11]) RN N

def call(self, x): recurrent cell

self.h tf.math.tanh( self.W hh self.h self . W xh X )

output self . W hy self.h :
= INnput vector

return output, self.h
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RNN Implementation in TensorFlow  “F

output vector j}t

tf.keras.layers.SimpleRNN(rnn units)

F

RNN

recurrent cell

INnput vector
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Backpropagation Through Time (BPTT)



Recall: Backpropagation in Feed Forward Models

.’V

Backpropagation algorithm:

. lake the derivative (gradient) of the
loss with respect to each parameter

2. Shift parameters in order to
minimize 10ss

\\ 4)

-I"

.

: .
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RNNSs: Backpropagation I hrough [ime

= Forward pass

At X0 X1 A2 . At
am 6.5191 Introduction to Deep Learning L —
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RNNSs: Backpropagation I hrough [ime

= Forward pass
<+— Backward pass
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HE Massachusetls

I I Institute of
Technology

Standard RNIN Gradient Flow

h NN NN M AR h
0 W hn W hn Whn t
Wxh W xn Wxh W n

x[] X1 xz E = = 'xt
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Standard RNIN Gradient Flow

h NN NN M AN h
0 W hn W hn Whn t
w.rh th W.‘th wxh

x[] X1 xz I 'xt

Computing the gradient wrt hy Involves many factors of W), + repeated gradient computation!
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Standard RNN Gradient Flow: Exploding Gradients

h NN NN M AN h
0 W hh W hh W hh t
Wi W n Win W xn

x[] X1 xz I 'xf

Computing the gradient wrt hy Involves many factors of W), + repeated gradient computation!

Many values > |
exploding gradients

Gradient clipping to
scale big gradients
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Standard RNN Gradient Flow:Vanishing Gradients

h NN NN M AN h
0 W hn W hn Whn t
w.l:‘h th W:t:h W:::h

x[] X1 xz I 'xf

Computing the gradient wrt hy Involves many factors of W), + repeated gradient computation!

Many values < |
vanishing gradients

|. Activation function
2. Weight initialization
3. Network architecture
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The Problem of Long-Term Dependencies

Why are vanishing gradients a problem/?
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The Problem of Long-Term Dependencies

Why are vanishing gradients a problem/?

Multiply many small numbers together
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The Problem of Long-Term Dependencies

Why are vanishing gradients a problem/?

Multiply many small numbers together

l

crrors due to further back time steps
nave smaller and smaller gradients
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The Problem of Long-Term Dependencies

Why are vanishing gradients a problem/?

Multiply many small numbers together

l

crrors due to further back time steps
nave smaller and smaller gradients

l

Blas parameters to capture short-term
dependencies
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The Problem of Long-Term Dependencies

“I'he clouds are In the

Why are vanishing gradients a problem/?

Multiply many small numbers together

l

crrors due to further back time steps
nave smaller and smaller gradients

l

Blas parameters to capture short-term
dependencies
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The Problem of Long-Term Dependencies

“I'he clouds are In the

Why are vanishing gradients a problem/?

9, 2 9, ¢
Multiply many small numbers together - - -

X X
crrors due to further back time steps E 3

nave smaller and smaller gradients

l

Blas parameters to capture short-term
dependencies
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The Problem of Long-Term Dependencies

“I'he clouds are In the

Why are vanishing gradients a problem/?

i,

Y2

e

V4

9 7 s,
Multiply many small numbers together
| - T
OB ©

. Ao X3 X4
crrors due to further back time steps

nave smaller and smaller gradientg ‘I grew up In France, ... and | speak fluent

l

Blas parameters to capture short-term
dependencies
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The Problem of Long-Term Dependencies

“I'he clouds are In the

Why are vanishing gradients a problem/?

i,

Y2

e

V4

9 7 s,
Multiply many small numbers together
| - T
OB ©

. Ao X3 X4
crrors due to further back time steps

nave smaller and smaller grad\entg ‘I grew up In France, ... and | speak fluent
l 72 9, IR

Blas parameters to capture short-term - - - -
dependencies
@ ' r:.:; l HE B BN IE Xigq

Ft+1
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Trick #1:Activation Functions

1.0

- RelLU derivative

0.9

0.8

07 Using ReLU prevents
06 f from shrinking the
03 oradients when x > 0

0.4

_-sigmoid derivative
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Trick #2: Parameter Initialization

1 0 O
0 1 0O
0 0 1

o O O

Initialize weights to identity matrix
1, =

iNItialize biases to zero

This helps prevent the weights from shrinking to zero.
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Solution #3: Gated Cells

[dea: use a more complex recurrent unit with gates to
control what information Is passed through

gated cell
LSTM, GRU, etc.

Long Short Term Memory (LSTMs) networks rely on a gated cell to
track information throughout many time steps.
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Long Short Term Memory (LSTM) Networks



Standard RNN

In a stanaarad RNN, repeating modules contain a simple computation node

BN Massachusetts - .
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Long Short Term Memory (LSTMs)

LSTM modules contain computational blocks that control information flow

L STM cells are able to track information throughout many timesteps

1F tf.keras.layers.LSTM(num units)

BB Massachusetts [ |
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Long Short Term Memory (LSTMs)

Information 1s added or removed through structures called gates

Gates optionally let information through, for example via a
sigmold neural net layer and pointwise multiplication
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Long Short Term Memory (LSTMs)

How do LSTMs work?
|) Forget 2) Store 3) Update 4) Output

Yt

I am i assachusetts 65191 Introduction to Deep Learning
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Long Short Term Memory (LSTMs)

|) Forget 2) Store 3) Update 4) Output

L STMs forget irrelevant parts of the previous state

65191 Introduction to Deep Learning
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Long Short Term Memory (LSTMs)

|) Forget 2) Store 3) Update 4) Output

| STMs store relevant new Information into the cell state
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Long Short Term Memory (LSTMs)

|) Forget  2) Store 3) Update 4) Output

LS TMs selectively update cell state values

65191 Introduction to Deep Learning
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Long Short Term Memory (LSTMs)

) Forget  2) Store  3) Update 4) Output

The output gate controls what information Is sent to the next time step
Yt

tanh

III'- Massachuselts 65191 Introduction to Deep Learning
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Long Short Term Memory (LSTMs)

|) Forget 2) Store 3) Update 4) Output

Yt
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LSTM Gradient Flow

Uninterrupted gradient flow!

V1 V2 V3

Illil- assachusetls 65191 Introduction to Deep Learning
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LSTMs: Key Concepts

. Maintain a separate cell state from what Is outputted

2. Use gates to control the flow of information

* Forget gate gets rid of Irrelevant information
* Store relevant information from current input
* Selectively update cell state

* Output gate returns a filtered version of the cell state

3. Backpropagation through time with uninterrupted gradient flow

H B Massachusetts 1 |
III I I Wassachus 65191 Introduction to Deep Learning

Technology & introtodeeplearning.com W @MITDeeplearning /27120




RNN Applications




Example Task: Music Generation

- C C A Input: sheet music

Output: next character In sheet music

3 # G C
6.5191 Lab!
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Example Task: Sentiment Classification

sentiment

<positive>
Input: sequence of words
Output: probability of having positive sentiment
1F loss = tf.nn.softmax cross entropy with logits(y, predicted)

love tnis class!
S BN Massachuseits 65191 Introduction to Deep Learning N . -
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Example Task: Sentiment Classification

Tweet sentiment classification

sentiment
<positive>
% lvar Hagendoorn e low ' '
qll . tvarHagendoorn . w
The @\ Introduction to #Deeplearning Is
definitely one of the best courses of its kind
currently available online
INntrotoaeeplearning.com
1245 PM - 12 F
Angels-Cave
Hapiing 1o &F
| wouldn't mind a bit of snow right now. We
haven't had any in my bit of the Midlands this
: ' ’ &
love this class! winter: :(
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Example lask: Machine Iranslation

e chien mange
the dog eats <start= e chien
Encoder (English) Decoder (French)
W= Massachusetts 65191 Introduction to Deep Learning o ——
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Example lask: Machine Iranslation

e chien mange
encoding
bottleneck
the dog eats <start= e chien
Encoder (English) Decoder (French)
S BN Massachuseits 65191 Introduction to Deep Learning _ -
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Attention Mechanisms

e chien mange

Attention mechanisms in neural networks
provide learnable memory access

-___-...
-._.....---.
"
5
.I.l
"

|

|
:
|

the dog eats <start= e chien
Encoder (English) Decoder (French)
HEE Massachusetts T '
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Trajectory Prediction: Self-Driving Cars
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& introtodeeplearnil £.COom W @MITDeeplearning



Environmental Modeli
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Deep Learning for Sequence Modeling: Summary

. RNNs are well suited for sequence modeling tasks

2. Model sequences via a recurrence relation

3. Training RNNs with backpropagation through time
4. (Gated cells like LSTMs let us model long-term dependencies

5. Models for music generation, classification, machine translation, and more
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6.519 |: Introduction to Deep Learning

| ab |: Introduction to TensorFlow and Music Generation with RNNs

LInk to downloaa labs:
http://Introtodeeplearning.com#schedule

. Open the lab In Google Colab

2. Start executing code blocks and filling in the # 1ODOs
3. Need help! Find a [A or come to the front!
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