

Deep Reinforcement Learning

Alexander Amini MIT 6.S191 January 29, 2020

Learning in Dynamic Environments

Reinforcement Learning: Robots, Games, the World

Robotics

Game Play and Strategy

Supervised Learning

Data: (x, y)

 $oldsymbol{x}$ is data, $oldsymbol{y}$ is label

Goal: Learn function to map

$$x \rightarrow y$$

Apple example:

This thing is an apple.

Supervised Learning

Unsupervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn function to map

 $x \rightarrow y$

Data: x

x is data, no labels!

Goal: Learn underlying

structure

Apple example:

This thing is an apple.

Apple example:

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Data: (x, y)

x is data, y is label

Data: x

x is data, no labels!

Data: state-action pairs

Goal: Learn function to map

 $x \rightarrow y$

Goal: Learn underlying

structure

Goal: Maximize future rewards over many time steps

Apple example:

This thing is an apple.

Apple example:

This thing is like the other thing.

Apple example:

Eat this thing because it will keep you alive.

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Data: (x, y)

Data: x

x is data, no labels!

Data: state-action pairs

Goal: Learn RL: our focus today.

 $x \rightarrow y$

Goal: Maximize future rewards over many time steps

Apple example

Apple example

Apple example:

Eat this thing because it will keep you alive.

This thing is like the other thing.

Agent: takes actions.

Environment: the world in which the agent exists and operates.

Action: a move the agent can make in the environment.

Action space A: the set of possible actions an agent can make in the environment

Observations: of the environment after taking actions.

State: a situation which the agent perceives.

Reward: feedback that measures the success or failure of the agent's action.

(Return)

Discounted

Total Reward (Return)
$$R_t = \sum_{i=t}^{\infty} \gamma^i r_i = \gamma^t r_t + \gamma^{t+1} r_{t+1} \dots + \gamma^{t+n} r_{t+n} + \dots$$

$$\gamma: \text{ discount factor; } 0 < \gamma < 1$$

Defining the Q-function

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \cdots$$

Total reward, R_t , is the discounted sum of all rewards obtained from time t

$$Q(s_t, a_t) = \mathbb{E}[R_t | s_t, a_t]$$

The Q-function captures the **expected total future reward** an agent in state, s, can receive by executing a certain action, a

How to take actions given a Q-function?

$$Q(s_t, a_t) = \mathbb{E}[R_t | s_t, a_t]$$

(state, action)

Ultimately, the agent needs a policy $\pi(s)$, to infer the best action to take at its state, s

Strategy: the policy should choose an action that maximizes future reward

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} Q(s, a)$$

Deep Reinforcement Learning Algorithms

Value Learning

Find Q(s, a)

 $a = \underset{a}{\operatorname{argmax}} Q(s, a)$

Policy Learning

Find $\pi(s)$

Sample $a \sim \pi(s)$

Deep Reinforcement Learning Algorithms

Value Learning

Find Q(s, a)

 $a = \underset{a}{\operatorname{argmax}} Q(s, a)$

Policy Learning

Find $\pi(s)$

Sample $a \sim \pi(s)$

Digging deeper into the Q-function

Example: Atari Breakout

It can be very difficult for humans to accurately estimate Q-values

Which (s, a) pair has a higher Q-value?

Digging deeper into the Q-function

Example: Atari Breakout - Middle

It can be very difficult for humans to accurately estimate Q-values

Which (**s**, **a**) pair has a higher Q-value?

Digging deeper into the Q-function

Example: Atari Breakout - Side

It can be very difficult for humans to accurately estimate Q-values

Which (s, a) pair has a higher Q-value?

Deep Q Networks (DQN)

Deep Q Networks (DQN)

$$\mathcal{L} = \mathbb{E}\left[\left\| \left(r + \gamma \max_{a'} Q(s', a')\right) - Q(s, a) \right\|^2 \right]$$
 Q-Loss

Deep Q Network Summary

Use NN to learn Q-function and then use to infer the optimal policy, $\pi(s)$

Send action back to environment and receive next state

DQN Atari Results

DQN Atari Results

Downsides of Q-learning

Complexity:

- Can model scenarios where the action space is discrete and small
- Cannot handle continuous action spaces

Flexibility:

• Policy is deterministically computed from the Q function by maximizing the reward \rightarrow cannot learn stochastic policies

To address these, consider a new class of RL training algorithms:

Policy gradient methods

Deep Reinforcement Learning Algorithms

Value Learning

Find Q(s, a)

 $a = \operatorname{argmax} Q(s, a)$

Policy Learning

Find $\pi(s)$

Sample $a \sim \pi(s)$

Deep Q Networks (DQN)

DQN: Approximate Q-function and use to infer the optimal policy, $\pi(s)$

Policy Gradient (PG): Key Idea

DQN: Approximate Q-function and use to infer the optimal policy, $\pi(s)$

Policy Gradient: Directly optimize the policy $\pi(s)$

What are some advantages of this formulation?

Discrete vs Continuous Action Spaces

Discrete action space: which direction should I move?

Discrete vs Continuous Action Spaces

Discrete action space: which direction should I move?

Continuous action space: how fast should I move?

Policy Gradient (PG): Key Idea

Policy Gradient: Enables modeling of continuous action space

Training Policy Gradients: Case Study

Reinforcement Learning Loop:

OBSERVATIONS

State changes: S_{t+1} Reward: T_t Action: a_t

Case Study — Self-Driving Cars

Agent: vehicle

State: camera, lidar, etc

Action: steering wheel angle

Reward: distance traveled

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrease probability of actions that resulted in low reward
- 5. Increase probability of actions that resulted in high reward

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrease probability of actions that resulted in low reward
- 5. Increase probability of actions that resulted in high reward

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrease probability of actions that resulted in low reward
- 5. Increase probability of actions that resulted in high reward

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrease probability of actions that resulted in low reward
- 5. Increase probability of actions that resulted in high reward

Training Algorithm

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrease probability of actions that resulted in low reward
- 5. Increase probability of actions that resulted in high reward

log-likelihood of action

$$\mathbf{loss} = -\log P(a_t|s_t) R_t$$

reward

Gradient descent update:

$$w' = w - \nabla \mathbf{loss}$$

$$w' = w + \nabla \log P(a_t|s_t) R_t$$
Policy gradient!

Reinforcement Learning in Real Life

- 1. Initialize the agent
- 2. Run a policy until termination
- 3. Record all states, actions, rewards
- 4. Decrease probability of actions that resulted in low reward
- 5. Increase probability of actions that resulted in high reward

Data-driven Simulation for Autonomous Vehicles

VISTA: Photorealistic and high-fidelity simulator for training and testing self-driving cars

Deploying End-to-End RL for Autonomous Vehicles

Policy Gradient RL agent trained entirely within VISTA simulator

End-to-end agent directly deployed into the real-world

First full-scale autonomous vehicle trained using RL entirely in simulation and deployed in real life!

Deep Reinforcement Learning Applications

Reinforcement Learning and the Game of Go

The Game of Go

Aim: Get more board territory than your opponent.

Board Size n x n	Positions 3 ^{n²}	% Legal	Legal Positions
×	3	33.33%	
2×2	81	70.37%	57
3×3	19,683	64.40%	12,675
4×4	43,046,721	56.49%	24,318,165
5×5	847,288,609,443	48.90%	414,295,148,741
9×9	4.434264882×10 ³⁸	23.44%	1.03919148791×10 ³⁸
13×13	4.300233593×10 ⁸⁰	8.66%	3.72497923077×10 ⁷⁹
19×19	1.740896506×10 ¹⁷²	1.20%	2.08168199382×10 ¹⁷⁰

Greater number of legal board positions than atoms in the universe.

Human expert positions

Classification

Supervised Learning policy network

RL policy network

Self-play data

Value network

1) Initial training: human data

- 1) Initial training: human data

AlphaZero: RL from Self-Play (2018)

Deep Reinforcement Learning: Summary

Foundations

- Agents acting in environment
- State-action pairs > maximize future rewards
- Discounting

Q-Learning

- Q function: expected total reward given s, a
- Policy determined by selecting action that maximizes Q function

Policy Gradients

- Learn and optimize the policy directly
- Applicable to continuous action spaces

6.5191:

Introduction to Deep Learning

Lab 3: Reinforcement Learning

Link to download labs: http://introtodeeplearning.com#schedule

- I. Open the lab in Google Colab
- 2. Start executing code blocks and filling in the #TODOs
 - 3. Need help? Find a TA or come to the front!!