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Learning in Dynamic Environments
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Reinforcement Learning: Robots, Games, the World

Robotics Game Play and Strategy
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Classes of Learning Problems

Supervised Learning

Data: (x, y)
X 1s data, y Is label

Goal: Learn function to map
X =y

Apple example:

\Y

1his thing 1s an apple.
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Classes of Learning Problems

Supervised Learning Unsupervised Learning
Data: (x, y) Data: x
X Is data, y 1s label X 1s data, no labels!

Goal: Learn function to map  Goal: Learn underlying
X =Yy structure

Apple example: Apple example:

\Y

1This thing 1s an apple.

)

()

1his thing Is like
the other thing.
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Classes of Learning Problems

Supervised Learning Unsupervised Learning  Reinforcement Learning
Data: (x, y) Data: x Data: state-action pairs

X 1s data, y Is label X 1s data, no labels!

Goal: Learn function to map  Goal: Learn underlying Goal: Maximize future rewards

X =Y structure over many time steps
Apple example: Apple example: Apple example:
This thing is an apple. This thing is IHKE Cat ’Fhis thing becguse t
the other thing will keep you alive.
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Classes of Learning Problems

Reinforcement Learning

Data: state-action pairs

RL: our fOCUS tOday. Goal: Maximize future rewards

over many time steps

Apple example:
<

C?

~at this thing because It
will keep you alive.
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Reinforcement Learning (RL): Key Concepts

Agent: takes actions.
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Reinforcement Learning (RL): Key Concepts

ENVIRONMENT

Environment: the world in which the agent exists and operates.

III'- e 6.5191 Introduction to Deep Learning
Technology '@ introtodeeplearning.com W aMl Deeplearning

/29120




Reinforcement Learning (RL): Key Concepts

ENVIRONMENT

ACTIONS

Action: a2 move the agent can make In the environment.
Action space A:the set of possible actions an agent can make In the environment
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

Action: dy ENVIRONMENT

ACTIONS

Observations: of the environment after taking actions.
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 41

Action: dy ENVIRONMENT

ACTIONS

State: a situation which the agent percelves.
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 41

Reward: 1%

Action: dy ENVIRONMENT

ACTIONS

Reward: feedback that measures the success or faillure of the agent's action.
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: St 4 1

Reward: 7%
AGENT Action: dy ENVIRONMENT
ACTIONS
Total Reward B
(Return) ——~~—__
Ry = Ii
1=t
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: St 4 1

Reward: 7%
AGENT Action: dy ENVIRONMENT
ACTIONS
Total Reward B
(Return) ——~~—__
Ry = i = 1T+ Tppq e T Tppy + o0
1=t
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: St 4 1

Reward: 1%
AGENT Action: a, ENVIRONMENT
ACTIONS
Discounted .
Total Reward \ R — i‘r'-
(Return) t VT
1=t
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: St 4 1

Reward: 7%
AGENT Action: a; ENVIRONMENT
ACTIONS
Discounted

e
Total Reward |
L .t t+1 t+
(Return) \Rt » Z]/I?"i = YTy TY Tigq.eeTYVY “an + ...
=t

Y. discount factor; 0 <y <1
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Defining the Q-function

Re =1t + YTegq Y Tpgp + o

Total reward, Ry, Is the discounted sum of all rewards obtained from time t

Q(s¢ ar) = E[R¢|se, ar]

The Q-function captures the expected total future reward an
agent In state, s, can receive by executing a certain action, a
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How to take actions given a Q-function!

Q(s¢,ar) = E|R¢|se, at]

(state, action)

Ultimately, the agent needs a policy 1(s), to infer the best action to take at its state, s

Strategy: the policy should choose an action that maximizes future reward

n*(s) = argmax Q(s, a)
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Deep Reinforcement Learning Algorithms

Value Learning

Find Q (s, a)

a = argmax Q(s, a)
a

~

-

Policy Learning

Find (s)

Sample a ~ m(s)

~




Deep Reinforcement Learning Algorithms

N
Value Learning
Find Q (s, a)
a = argmax Q(s, a)
a
%




Digging deeper into the Q-function

Example: Atari Breakout

t can be very difficult for humans to
accurately estimate Q-values

VVhich (s, a) pair has a
hisher Q-value! 7§ &
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Digging deeper into the Q-function

Example: Atari Breakout - Middle

't can be very difficult for humans to
_ accurately estimate Q-values

VVhich (s, a) pair has a
hisher Q-value! 7§ &

III'- s 65191 Introduction to Deep Learning

Instt h: q::1' . . ) .
Technology @ introtodeep earning.com W @MITDeeplearning

/29120




Digging deeper into the Q-function

Example: Atari Breakout - Side

't can be very difficult for humans to
_ accurately estimate Q-values

VVhich (s, a) pair has a
hisher Q-value! 7§ &
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Deep Q Networks (DQN)

How can we use deep neural networks to model Q-functions!

4 N

E— Action + State =
. 1 Expected Return
state, s Dee
P — Q(s,a)
NN
“move |
right”
action, a
. Input Agent Output
o Massachuseiis 65191 Introduction to Deep Learning M ArE A0
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Deep Q Networks (DQN)

How can we use deep neural networks to model Q-functions!

4 I
R Action + State =
. 1 Expected Return
state, s Dee
W G
"move |
right”
action, a
. Input Agent Output
I HEN Massachusetts
I III ';E::::rﬁigﬂ; @ introtodeeplearning.com
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State > Expected Return for Each Action
Q (51 ﬂl)
~ Deep Q(s,az)
NN
state, S (s, an)
Input Agent Output
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Deep Q Networks (DQN): Training

—How can we use deep neural networks to model Q-functions!?

4 ) 4 )
— Action + State = State > Expected Return for Each Action
- Expected Return

| Q (5: Hl)
state, s DP\T[\E\F — 0(s,a) — Deep Q(s,az)
IR
‘move
right” state, S Q(s, ay)
action, a
. Input Agent Output \ Input Agent Output
VWhat happens if we take all the best actions’
Maximize target return = train the agent
-- Ei;;ﬂﬁiﬂ"; & ir.:-'u::tfc.:li‘ui Et:::ﬁ?gii:ﬁ’jn mgeg“ﬁa;:izﬁma"ﬂiﬂg Vinint Na
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Deep Q Networks (DQN): Training

—How can we use deep neural networks to model Q-functions!?

4 N 4 N

- Action + State = State > Expected Return for Each Action
- Expected Return
state, s Deep

1 Q(s,a;)

w6 —— Deep Q(s, a2)
| - NN
“move
right” state, S Q(s, ay)
action, a
. Input Agent Output \ Input
target
Take all the best actions =2
r+ymaxQ(s’,a)
y e ) - target return
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Deep Q Networks (DQN): Training

—How can we use deep neural networks to model Q-functions!?

4 N 4 N

- Action + State = State > Expected Return for Each Action
- Expected Return
state, s Deep

1 Q(s,a;)

— (Q(s,a) —_ Deep Q(s,az)

NN —

| | NN
‘move
right” state, S Q(s, ay)
action, a
. Input Agent Output \ Input
predicted
Q(s,a) prediction
SER Ma 65191 Introduction to Deep Learnin . .
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!

4 | N 4 N
— Action + State = State > Expected Return for Each Action
- Expected Return

| Q (51 ﬂl)
state, S DP\‘TEJD . Q[S; {1) . DEED Q(S! HEJ
| NN
‘move
right” state, S Q(s, a)
action, a
. Input Agent Output N Input Agent Output
target predicted
—

H B Massachusetts
I I Institute of

Technology

L=E [H(r + yn‘g}x(}(s’,a’)) — 0 (s, a)”z
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Deep Q Network Summary

Use NN to learn Q-function and then use to infer the optimal policy, T(s)

state, S Q(s,a;) = 20
= \
- Deep 0(s,a,) =3 —» n(s)=argmaxQ(s,a)
NN o
&S / = a; {m
Q{S, HEJ = (

=)

Send action back to environment and recelve next state
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DQN Atari Results

Fully connected
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DQN Atari Results
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Downsides of Q-learning

Complexity:
* (Can model scenarios where the action space Is discrete and small
* (Cannot handle continuous action spaces

Flexibility:
* Policy 1s deterministically computed from the Q function by maximizing the
reward =2 cannot learn stochastic policies

To address these, consider a new class of RL training algorithms:
Policy gradient methods
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Deep Reinforcement Learning Algorithms

-

Policy Learning

Find (s)

Sample a ~ m(s)

~




Deep Q Networks (DQN)

DQN: Approximate Q-function and use to infer the optimal policy, 1(s)

Q[:S; ﬂl) = 20
= \
Deep
NIN Qtigﬂ;) =3 — 1(s) = argmaxQ (s, a)
/e
state, s Q(s,az) =0
=N
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Policy Gradient (PG): Key Idea

Policy Gradient: Directly optimize the policy m(s)

P("-'11|5} = 0.9 Gi€4 /
DEEP P(ﬂz|5) = 01—» H(S)”P(ﬂlgj
/ = a; (=
state, S P("-'13|5) -
—

e What are some advantages of this formulation!?
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Discrete vs Continuous Action Spaces

Discrete action space: which direction should | move? N >

P(als)
I
- ] ﬂ_
state, s :: 83 ::>
Left Stay Right
s lassachuselis 65191 Introduction to Deep Learning -
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Discrete vs Continuous Action Spaces

Continuous action space: how fast should | move! @? m/s

P(als)

L )
Faster Faster
state, S | oft Right
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Policy Gradient (PG): Key Idea

Policy Gradient: tnables modeling of continuous action space

J‘Ci P(als) =1

\ J

Mean, Ut = — Y

Deep \P(ﬂlﬂ = N(u,0%)
NN / m(s) ~ P(als)
Variance, 0% = 0.5 = —0.8 [m/s]
state, S A P(als) = N(u,o°)
-1
Faster <:| |::> -aster
| eft Right
HE Massachusetis ESI?I Iﬁt]"l:ldl.lll:h 1o D LEﬁrnl ! i
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Training Policy Gradients: Case Study

Reinforcement Learning Loop: Case Study — Self-Driving Cars

OBSERVATIONS

State changes: S¢ 4 1 Agent: vehicle

. neward: T State:  camera, lidar, etc
A Action: steering wheel angle
Action: a Reward: distance traveled

ACTIONS
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Training Policy Gradients

Training Algorithm I I
. Inrtialize the agent : :
2. Run a policy until termination | |
3. Record all states, actions, rewards

4. Decrease probability of actions that
resulted in low reward

O. Increase probabillity of actions that
resulted in high reward
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Training Policy Gradients

Training Algorithm

. Inrtialize the agent

2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probability of actions that
resulted in low reward

O. Increase probabillity of actions that
resulted in high reward
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Training Policy Gradients
I

Training Algorithm

. Inrtialize the agent
2. Run a policy until termination
3. Record all states, actions, rewards

4. Decrease probability of actions that
resulted in low reward

O. Increase probabillity of actions that
resulted in high reward
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Training Policy Gradients

Training Algorithm

. Inrtialize the agent

2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probability of actions that
resulted in low reward

O. Increase probabillity of actions that

resulted in high reward e
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Training Policy Gradients

Training Algorithm - ,
log-likelihood of action

. Initialize the agent loss = —log P(a,|s,) R,

2. Run a policy until termination reward

3. Record all states, actions, rewards

4. Decrease probability of actions that Gradient descent update:

resulted In low reward w' =w — Vloss
w' = w +|Vlog P(a;|s;) R;

O. Increase probabillity of actions that
resulted in high reward

Policy gradient!
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Reinforcement Learning in Real Life

Training Algorithm

. Inrtialize the agent
2. Run a policy until termination
3. Record all states, actions, rewards

4. Decrease probability of actions that
resulted in low reward

J. Increase probability of actions that
resulted in high reward
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Data-driven Simulation for Autonomous Vehicles

VISTA: Photorealistic and high-fidelity simulator for training and testing self-driving cars

TR -_-"'-

[—=

AT TR G N . .
.” b S e "- R
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Deploying End-to-End RL for Autonomous Vehicles

Policy Gradient RL agent trained
entirely within VIS [A simulator

N

cnd-to-end agent directly
deployed Iinto the real-worla

N

First full-scale autonomous

vehicle trained using RL
entirely in simulation and

deployed in real life!
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Deep Reinforcement Learning Applications



Reinforcement Learning and the Game of Go
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The Game of Go

Aim: Get more board territory than your opponent.

Y soard Size Positions 31 7 Legal Legal Positions
| T nxn
OC s “oeiie™s
BEP YRR CasdPs | x| 33.33% \
CH TS 27 7]
N A
| ! 5y 08 3%3 683 | 64.40% 12,675
; o0 3{ ®
Ot "f::t.ii 4x4 43,046,721 | 56.49% 24,318,165
T T e Te T O 5x5 347,288,609,443 | 48.90% 414295,148.741
SPIL/OuED 2%, 9%9 4434264882x 1038 | 23.44% | 103919148791 x |03
AA LV 2PN 00 SO - 447 -
T OCOOEOSS e 3% 13 4300233593%10%° | 8.66% |  3.72497923077%107
9% |9 |.740896506x |0'/4 1.20% 2.08168199382x Q'Y

Greater number of legal board positions than atoms in the universe.

om | Hassachusetls 6.5191 Introduction to Deep Learning e
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL
pOS policy network policy network Self-play

te he
Ut Tl Classification N m - e Regression
— - © O —p

‘ Play ’ ~ Play ’

data Value network

d
_

Pt TR ik
L AREE . Weile
. = * =1

+++++
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL
positions policy network policy network Self-play data Value network

T e ST N
EENSFINEEFL L. APt 0 - _ EENSFINEEFL L. AFY 40
- Pees Classification n n .
HOTHEH Play Play |

d
_

Regression

E—

1) Initial training: human data
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL
positions policy network policy network Self-play data Value network

T e ST N
EENSFINEEFL L. APt 0 - _ EENSFINEEFL L. AFY 40
- Pees Classification n n .
HOTHEH Play Play |

d
_

Regression

E—

1) Initial training: human data

\ gt~ w § v === www S @ N

2) Self-play and reinforcement learning
- super-human performance
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL
positions policy network policy network Self-play data Value network

T e ST N
EENSFINEEFL L. APt 0 - _ EENSFINEEFL L. AFY 40
- Pees Classification n n .
HOTHEH Play Play |

d
_

Regression

E—

1) Initial training: human data

\ gt~ w § v === www S @ N

2) Self-play and reinforcement learning

- super-human performance \ /
3) “Inturtion” about board state
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AlphaZero: RL from Self-Play (2018)

5k
4k
3k
-
=i
- LL]
- 2Kk
&
1k
AlphaZero
4
e 1806k 2008k 300k 400k 5080k 600k 7808k
Training Steps
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Deep Reinforcement Learning: Summary

* Agents acting In * Q function: expected * Learn and optimize the
environment total reward given s, a policy directly
 State-action pairs =2 * Policy determined by * Applicable to
maximize future rewards selecting action that continuous action
» Discounting maximizes Q function spaces
am  asacwseils 6.5191 Introduction to Deep Learning o
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6.519 |
Introduction to Deep Learning

Lab 3: Reinforcement Learning

LINk to downloaa Iabs:
http://iIntrotodeeplearning.com#schedule

. Open the lab in Google Colab
2. Start executing code blocks and filling In the # 1ODOs
3. Need help! rind a |A or come to the front!




