Generalizable Autonomy In Robot Manipulation
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Generalizable Autonomy In Robot Manipulation
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Generalizable Autonomy In Robot Manipulation

\Vision: Build Intelligent Robotic Companions
towards Human Enrichment and Augmentation
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Generalizable Autonomy in Robot Manipulation
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Generalizable Autonomy In Robot Manipulation

Vision: Build Intelligent Robotic Companions

Approach: Learning with Structured Inductive Bias and Priors

Demonstration Task Imitation (Generalization

Instructional Input Learn to do the task in New Task Variations
(Teleoperation, Video, Language) Same Environment in Novel Environments



Layers of Imitation

Movement Skill Semantic Task Specification
Skills Sequencing Purpose
Control | Planning

Cheng et al. Sci.Rob. 2019
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Visuo-Motor Skills

Challenge: Algorithmic frameworks to learn a diversity of skills

Approach: Close the Visuo-Motor Loop with Learning based Control

Cleaning



Visuo-Motor Skills: Generalization

.u Different Surfaces — Be Gentle?

Skills: Surface Wiping Generalization



Visuo-Motor Skills: Current Paradigm

Model Based Task (Operational) Space Control

Reference I Desired
Generator | State

Desired State: x4 .
Robot Model Parameters: M, J Action

Action: Environment | . Actual :
Environment
Model State

Environment Model + Reference Generator

obj data reach (p) approach

bro = Kp(ta D+ K20 =D ¥ @ @ @ @
M(q' q) + C(CI; Q) + G(CI) + S(q, q) =T obj data : approach‘
t= ]T (]M_llT)_l(jéref_]q +]M_1F)

Robot Model

Actual State: Image, Force, Joint Enc.

Robot Model

+ Leverages Robot Model - Needs Environment (Task) Model - Task Dependent State

+ Compliant Control - Explicit State Estimation

[Khatib.1987], [Bruyninckx et al. , '96], [Schaal ‘03], [Rodriguez et al. 2012], [Vijaykumar et al. “11],[lispreet et al. “13] J[Li, Billard, et al. ‘14], [Lee, Abbeel et al. ‘15]



Visuo-Motor Skills: Current
3] Agent |——

E

Deep Reinforcement Learning

State:
Image

Action:
Torque

Policy

T

hidden neurons
output neurons
input neurons

Elo Rating

Reward

5000

Paradigm

i Action @

State
Training
Environment : ;
: //
Testing '_
Environment

4000 |

3000 |

2000 -

1000 -

-1000 -

-2000

10

15

20

=== AlphaGo Zero 40 blocks

T T T 1
25 30 35 40

esee AlphaGolee  eeee AlphaGo Master

+ Model Free: No Environment Model
+ State is Image
[Agrawal et al., '16], [Levine et al., '16], [Peng et al., '17], [Gu et al., '16], [Chebotar et al., 17], [Yahya et al., '16], [James et al., '17], [Popov et al., '17]

- Sample Inefficient
- Learn robot model (implicitly)

- If Training # Testing:
Policy Fails!



Visuo-Motor Skills: Our Approach

RL with Variable Impedance Task-Space

Reward

State

Training
Environment

|<_

Action

Reference I Desired

T

Generator | State

Environment
Model

Robot Model

Actlon

Actual
State

—| Environment

Pe P

L/

IROS 2019



Visuo-Motor Skills: Our Approach

RL with Variable Impedance Task-Space
'©

Action a

Reference Generator @

(learned)
(20 Hz)

C ller f ‘
Model-Free »l i f(n-(ot))

RL Agent Action Robot Model 7&
T \ 4 (Deterministic)

Actual I )
Environment
State I

'M

IROS 2019



Visuo-Motor Skills: Our Approach

RL with Variable Impedance Task-Space
Action a @ f @

e (20 HZ)P Interpolation
R T = f(m(0¢))

? >| Contillerf ‘ m(oy) = a: de;lffdl Kn:Kvl] 7&*\

Sensory |
Obs. Pose and Impedance
Torque T Velocity Gains

O¢
Environment |<7 (500 Hz) T = _]j(xd, Xg, Kp, K,)
1

Deterministic Position-Velocity
Control Jacobian J and Inertia M

+ Model Free: No Environment Model  + Leverages Robot Model + Sample Efficient
+ State is Image + Compliant Control + Transferable

IROS 2019



Visuo-Motor Skills: Action Representation

Minimize the number Maintain Contact Don’t push with more
Surface Wiping of Dirty Tiles with the Table than Robot Payload
Input: Image (48x48) Reward: 1, Y. (dirt_on_table) + A, (distance_to_table) — A;1 (F = 40N)

6000 -

Performance Gap

Policy Output

l

EE Var Imp (Ours)

EE Fixed Imp. (Med.)
EE Fixed Imp. (High)
Joint Var. Imp.

Number of Steps (10°)
Evaluation During Training (PPO)

Trained Policy Rollout (Ours)

2000 - Joint Velocity
after 1M steps Joint Imp.
EE Imp (low)
Joint Torque
0+ ] ] ]
0.0 0.5 1.0 1.5

IROS 2019



Visuo-Motor Skills: Action Representation

Evaluation on Real Robot without Fine-Tuning

Training on Panda

T = fsim(m(os)) T = frea(m(0¢))
Success 80% (10 Trials)
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Skills: Imitation from Heuristics

Promise of Deep RL ...albeit, with a lot of training
closed loop-control with images

[Kalashnikov et al (2018). Levine et al. (2016), Pinto et al. (2016), Kalashnikov et al. (2018),
Yu et al. (2016), Haamoja et al. (2018), Lee et al. (2019), Vecerik et al. (2017)]



—~

Skills: Heuristics often beat RL

RL struggles with structured, multi-step skills

o 0)

4 — UR-Reacher-2

&. “ " \ 300 A scripted agent TRPO
‘ , 'l Average Y,

b‘ Returns 100 -

oo

Even simple heuristics beat RL

DDPG

1 1 1 1 1
0 30K 60K 90K 120K 150K
20min - 40min  60min  80min 100min

IROS 2019, Mahmood et al. 2018



Skills: Exploration without Guidance

Random Exploration is slow ...even when first steps are obvious

Can Human Intuition Guide Exploration”

Guetal. 2017



Skills: Imitation from Heuristics

Teachers

Intuition

Implement Useful Skills
...but not full solution

Teachers

Black-box controllers
solving parts of the task

AC-Teach: CoRL 2019



Skills: Imitation from Heuristics

Teachers Agent Exploration

Guided by Teachers

Goals: A) faster agent training B) optimal test-time agent performance



Skills: Imitation from Heuristics

Naive action choice might not work well!

AC-Teach: CoRL 2019



Off-Policy RL: DDPG Review

> Replay buffer ]

Sample random mini-batches

1

VouJ(0) = VaQ(s, a) Vo pu(s|0) yi =13 + 7Q' (siy1, 1 (5i41]0%)]09)

Q(si, ai|6Q)

DNN

Lillicrap et al. 2015



AC-Teach: Actor-Critic with Teachers

ngent Policyw @
'LActor u: J I
> 4 )
>£( Teacher | L@ I Bayesian
>L Teacher 2 } L@ I kCritiC Q¢/

( : W I I Estimate guality of
? >L el Y ) l_)@ J the advice
e
<Environmen>< ?< ( Action }

Off-Policy Data A LSeIectmn Ty
Added to Buffer mg

AC-Teach: CoRL 2019



EXperiments
Task:

Teachers:
grab hook position hook pull push

AC-Teach: CoRL 2019



Results

—— B-DDPG + AC-Teach (ours) —— B-DDPG + DQN —— B-DDPG (no teachers)

Discounted Sum of Rewards

0 50000 100000 150000 200000 250000
Training Steps

AC-Teach is able to leverage a single teacher well
AC-Teach: CoRL 2019



Results

—— B-DDPG + AC-Teach (ours) —— B-DDPG + DQN —— B-DDPG (no teachers)

Discounted Sum of Rewards

>0 50000 100000 150000 200000 250000
Training Steps

AC-Teach speeds up training given multiple teachers
AC-Teach: CoRL 2019



Results

—— B-DDPG + AC-Teach (ours) —— B-DDPG + DQN —— B-DDPG (no teachers)

Discounted Sum of Rewards

0 50000 100000 150000 200000 250000
Training Steps

AC-Teach has agent learn behaviors not in teacher set
AC-Teach: CoRL 2019



Visuo-Motor Skills

B Grasping L 4 | ,
[l Pushing - | | | o
ll Picking e =
B \Wining Il Open door = ’

IROS 2019 CoRL 2019

Action Representations and Weak-Supervision provide

structure to enable learning efficiency and generalization
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Sequential Skills

. Primitive Skills
W
L » -
| - B Grasping Pushing
e | ‘ | Picking
- - Wiping I Open door
Skills: Surface Wiping
Sequential Skills
B Hammering (with unknown objects)

—J Cutting (with new knife)

R Sweeping (with new broom)



Seqguential Skills: Manipulation with Tools
Task-Oriented Grasping

Tool-Use

Initial State Task-Agnostic
Grasping’

/

Unknown Object

Optimizes for Grasp
Success Only

Suboptimal for Task! SUEERING

TPinto et al. '16, Levine et al. ‘16, Mahler et al. ‘18, Kalashnikov et al. ‘18




Visuo-Motor Skills: Task-Oriented Grasping

Input =

r \

=

4

) R g

Y Y
DepthImageo Task T

Task
Success

© |

Grasp
Success

Qutput =

?M?E

Hammerln

}

Y Y
Grasp Parameters g = (gx, 9y, 92, 9¢)  Policy a = n(o, g)

g*,m" = argmax Q7 (0, g) Score Function
Q7 (0,9) = P(Sr = 1]IS¢, #)1,boggP (Sc = 110,9)

|
Q7 (0, 9) = Qg 0c82: (0, 9)
| |

Task Conditioned  Grasp Success
Grasp Success

RSS 2018, IJRR 2019



Visuo-Motor Skills: Task-Oriented Grasping

CNN Model Output Loss Function
Input: Depth Image (64x64)
— > %:(0.9) £(S Q5 (0,9; 1))
task-oriented - T
> grasEIinIg —PQTlG(O,g) H(SG =1 )L(ST, QT|G (0,g; 82))
———»  Manipulation —PT[(CL | 0,9, 03) V03 log TL'(Cl | 0,9, 93)

grasping stage manipulation stage

§ ¢ V1 il
S AR

I8K diverse training objects large-scale data collection (I.5m Episodes)

RSS 2018, IJRR 2019



Visuo-Motor Skills: Task- Onented Graspmg

. hammering
task

| Sample grasp
candidates

v
:}
task-oriented
grasping —
model
task-oriented

grasp

manipulation
policy

—_—

Supjueds dses3
UOoIINIIXS Y|SE)

RSS 2018, IJRR 2019



Sequential Skills: Task-Oriented Grasping

- L

S (o)
O o

Success Rate
wW
(@)

.

N
o

—
o

(@)

Hammering Sweeping

Trained Policy Rollout (Ours)

) Antipodal Baseline ® Task-Agnostic ® Our Model
Unseen Test Objects

Two-Stage Joint
RSS 2018, IURR 2019 Optimization Optimization



Sequential Skills: Task-Oriented Grasping

T-Shapes L-Shapes

.
| &

hammering - G — == 1
70
9
®
a8 50
9p)
N 40
)
3
= 30
20
10
0
Hammering

Trained Policy Rollout (Ours)
Unseen Test Objects

Antipodal Baseline Task-Agnostic Our Model

Two-Stage Joint
RSS 2018, IURR 2019 Optimization Optimization



Sequential Skills: Task-Oriented Graspino

T-Shapes L-Shapes Misc.
'
‘e r
sweeping ¢ —TY
36%
47%
E.
el
Hammering Sweeping

Trained Policy Rollout (Ours)
Unseen Test Objects

Antipodal Baseline Task-Agnostic Our Model

Two-Stage Joint
RSS 2018, IURR 2019 Optimization Optimization



Sequential Skills

. Primitive Skills
W
L » -
| - B Grasping Pushing
e | ‘ | Picking
- - Wiping I Open door
Skills: Surface Wiping
Sequential Skills
B Hammering (with unknown objects)

—J Cutting (with new knife)

R Sweeping (with new broom)



Seqguential Skills: Multi-Step Reasoning

Skills: Multi-Step Reasoning Generalization



D .

Can we learn multi-step reasoning in robotics
under physical and semantic constraints













Model-based learning
choose action sequence

————

[Deisenroth et al, RSS’07], [Guo et al, NeurlPS’14], [Watter et al, NeurlPS’15], [Finn et al, ICRA'17], ......



Model-based learning

data 1
learning 1

[Ebert et al. CoRL’17]

[Janer et al. ICRA'19]



CAVIN: Hierarchical planning in learned latent spaces

CAVIN Planner

‘ P . Leverage Hierarchical Abstraction in Action Space

Without Hierarchical Supervision




CAVIN: Hierarchical planning in learned latent spaces

CAVIN Planner

subgoals




CAVIN: Hierarchical planning in learned latent spaces

CAVIN Planner

effect code ¢

actions




CAVIN: Hierarchical planning in learned latent spaces

choose
c~p(c)




CAVIN: Hierarchical planning in learned latent spaces

choose
c~p(c)




Hierarchical planning in learned latent spaces

choose choose
c~ p(c) Z~p(2)

________________________________________________

_________________________________________________

S -




CAVIN: Hierarchical planning in learned latent spaces

choose choose




Learning with cascaded variational inference

-----------------------------

task-agnostic interaction




visual observation

2 pPreprocess
| g o )
kinect2 sensor Ot

v

CAVIN Planner

action
| x,y, Ax, Ay |

A




Tasks

insertion Crossing

L, Joal [position

Object
Clear all objects within the Move the target to the goal Move the target to the goal

area of blue tiles. without traversing red tiles. across grey tiles
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Quantitative Evaluation

100

u Dense B Sparse

%0 12% .

N | 5%

7 Hierarchical Latent space dyn.
2 60 l
7 > Better performance with sparse
3 reward signal

30

20

10

0 Averaged over 3 Tasks

MPC CVAE-MPC SeCTAR CAVIN with 1000 test instances each

MPC (Guo et al. ‘14, Agrawal et al. ‘16, Finn et al. 17); CVAE-MPC (Ichter et al. 18), SeCTAR (Co-Reyes et al ‘18)



Move 2 obstacles




Get around




Squeeze through
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Compositional Planning

lJRR 2019

Self-Supervision and Structured Latent Variable Models

lead to good representations that generalize
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Object Arrangement ICRA 2018 CVPR 2019 (oral)
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Complex Task Structure

. e Visuo-Motor Skills
/ ® > ;
“Padaagy » B Grasping S B  Hammering
L Ca D ushing |
o Picking —ll Cutting
3 Wiping B Opendoor = Sweeping

Visuo-Motor Skills

Complex Task Structure

—
Put Put in .
Soap Washer Pick Place
I EEE
Open Pick Push Grasp Move Release
Complex Task Structure Do Laundry Object

Arrangement



Compositional Planning: Current Paradigm

—

10 .

sauare kBSHEHHAR ot al 2013

Ll T .
T . L}

—  ——

Train # Test
Reinforcement Learning Imitation Learning Meta Imitation Learning
- Sample Inefficient - Task Segmentation is non-trivial - New Task Structures
- Multi-step Structured Tasks - Multi-modality of Search Space - Few-Shot performance
- Needs non-trivial Reward Shaping - Fixed Permutation of Primitives - Input State as Video

RL: [Schaal 1997], [Chebotar et al., "17], [Yahya et al., "16], [James et al., '17], [Popov et al., '17], [Zhu et al. 18], [Hausman et al. 18]
Imitation: [Calinon et al 2008], [Argall et al 2009)], [Kober, Peters, et al. 09], [Pastor et al, 09], [Schulman et al. 2013], [Kroemer et al, 18], [Garg et al 2017]



Compositional Planning: Challenge

Task Domain . Learn Multiple Tasks  |I. Generalize to New

in the Same Domain  Tasks with a Single Demo
Training Tasks

Test Task

Instructional Demos




Compositional Planning

1

Fn 1 =8 J . ]V ]

[Duan et al. 17; Finn et al. 2017; Our Method
Wang et al. 2017; Yu et al. 2018] [ICRA'18], [CVPR'19)], [[ROS'19]
Models input demonstration Models input demonstration
as a flat sequence as a Compositional Hierarchy

One Shot Imitation Learning from Videos



Compositional Planning: Task Programming

Block Stacking (...): ¢
while (done):
pick and place (RED, BLUE):

pick (RED):
l move to (RED)

Grasp (RED)
<end> Pop
place(BLUE) :

move to (BLUE)
l Release (RED) Task 1
<end> POp SUb_taSk1
<end> Pop Move Red-block on top of Blue

ICRA18, CVPR "19]



Compositional

Planning: Task

Block Stacking (...): rrogram 1

Block Stacking (..«):
while (done):

pick and place (RED, BLUE):

pick (RED):

l move to (RED)

Grasp (RED)
<end> Pop
place(BLUE) :

l move to (BLUE)
Release (RED)

<end> Pop
<end> Pop

Programming

Training Task Structures

Program 2

ICRA18, CVPR "19]



Neural Task Programming (NT

Training supervision

{

= T

-‘A_Wi‘_-r---‘- -

°)

X3

N,

Demo Hierarchical Program Trace
Demo LJCTITTOU UUINTUTUVULTNIC | UIIU_y
Kinematics or Video
Altwy o s e —
e @ pick (blue)
Current State ®

—
‘ End-to-End LSTM Model

Hierarchical Policy Learning as Program

Current Program
pick_place(blue, green)

£(fe]

Loss: Compare with
Ground Truth Program

Induction
[ICRA18, CVPR “19]
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Neural Task Programming

Autonomous Execution



Recovery from Intermediate Failures

| il |
QOutput is not an

Open Loop State

Machine
i /U
Closed Loop

Feedback Policy




Performance

Accuracy

Neural Task Programming
Results

1.00

0.75

0.50

0.25

0.00

Test Task Structures with State Input

m Flat Policy o Pose Est. + Plan
(o]

m NTP (Ours) E2E Plan

1000

# of Tronmng Tasks

Better Generalization than Flat Policy + Works with Vision

ICRA18, CVPR "19]



Failure Modes

S

Graspina Failures



Compositional Planning: Task Programming

meta-learning

model
Demo Demo Conditional Policy
Kinematics or Video
Compositional
@ M— Model Prior
o "I
"End-to-End LSTM Model Program Induction
Inductive Bias on
Input-Output
Black-Box
Model

ICRA18, CVPR "19]



Compositional Planning: Task Graphs

meta-learning
model

Demo Demo Conditional Policy
Kinematics or Video

Task Graph Ei,—g—;\'—l ,| Task Graph
Generator Executor '
e ¥ 2

Neural Task Graph

Current
Observation

Hierarchical Policy Learning as Graph Induction
ICRA18, CVPR 19



Neural Task Graphs (NTG)

meta-learning
model

Demo Demo Conditional Policy
Kinematics or Video

Task Graph Ei‘_g—};'
Generator

Neural Task Graph

4 Parsed Sequence \u Graph Completion

Hierarchical Policy Learning as Graph Induction
ICRA18, CVPR 19



Neural Task Graphs (NTG)

meta-learning
model

Demo
Kinematics or Video

| Task Graph
Executor

Neural Task Graph

af £
Current
Observation

Hierarchical Policy Learning as Graph Induction
ICRA18, CVPR 19



Neural Task Graphs (NTG):

Task Graph

Place (Red)

Nodes: States @ appieiozie =l

Edges: Action

Place (Green) \ » Pick (Green)
‘ A

Representation
Conjugate Task Graph

O

() e .

@ s | Valid States SRl

g (i ] N
= Pick (Red) P Place (Red)

Nodes: Actions

Edges: States (Preconditions)
[ICRA18, CVPR "19]



Neural Task Graphs (NTG):

—xecution

Selected

Node

» Place (Green) «

‘4
*

' e . “"0 Q““‘ Selected
Observation Edge
P E v
Classifier Pick (Red)
P|Ck (Red) 4....................................E
Selected
Next Action

ICRA18, CVPR "19]



Neural Task Graphs (NTG)

Training supervision
{( f':f?t‘.' 5 RN )}

Demo Action Sequence

Demo

Kinematics or Video Demo Conditional

Policy
TaskGraph | oy Task Graph
Generator Executor "
s d
Neural Task Graph Current
Observation

Hierarchical Policy Learning as Graph Induction
[ICRA18, CVPR "19]



Performance

Accuracy

Neural Task Graph
Results

1.00 +

0.75 +

0.50 +

0.25 +

0.00 -

Test Task Structures with State Input

1.00 +
® Flat Policy 91%
9
E NTP (Ours) 84%
u NTG (Ours) 0.75 +
0.50 +
0.25
1%
—_ 0.00 -
100 1000

# of Training Tosks

Test Task Structures with Vision -

B NTP (Detector)
B NTP (Ours)
u NTG (Qurs)

< <
BEwm IEI II
50 100 400

# of Training Tasks

Weaker Supervision and Better Generalization

90%

ICRA18, CVPR "19]



Compositional Planning: NT

Object Sorting Table Clean Up Sequential Search and Prediction
(NTP) (NTP) Al2 Thor with NTG

ICRA18, CVPR "19]



Task Structure Learning

- Stack ; o~ !:;‘
Grasp E\/e Release
Object Arrangement ICRA 2018 CVPR 2019 (oral)

Compositional priors with modular structure enable

generalizable learning in hierarchical domains



Generalizable Autonomy in Robot Manipulation

@ 7 R“)\K
5 | 1
® - ¢ Nk
@é% o K R
CoRL 2018, IROS 2019 Data for
Robotics

]
@{;% B

/




Data for Robotics

Visuo-Motor Sequential Complex Task Procedural Execution
Skills Tasks Structure from Videos
Gl : - Stack
- e Pushing -
Picking ... .
Wlplng . Open door Grasp Move Release

Object Arrangement

Dataset
Size

Reinforcement Structured Weakly
Self-Supervision Supervision ervised i
PSP ow to getTArar Sets of StRTHTFed Supervision?



Data tfor Ropbotics: Imitation + RL

autonomous execution
1x real-time

Successful Insethion
- g . r (

Rajeswaran et al. (2018) Finn et al. (2017) Vecerik et al. (2017)
25 demonstrations 30 demonstrations 100 demonstrations

~ 10 Minutes ~ 10 Minutes ~ 30 Minutes



Data tor Robotics

Large-scale supervision in robotics is difficult

=Xpert needs to demonstrate, not label



Data tor Robotics: Robo lurk

User Interface

Web Browser View

+ Scales easily with commodity hardware

+ Natural 6-DoF Free Space Control
[CoRL 18, IROS 2019



RopoTurk: Scaling Imitation with Cloud






RoboTurk Pilot Datasets

Simulated Data

137.5 hours of demonstrations

22 hours of total platform usage
3 dexterous manipulation tasks

3224 total attempted demos

15 novice, remote users

Real Robot Data

111 hours of robot demos

1 week of data collection

3 dexterous manipulation tasks
2144 total demonstrations

54 non-expert users

[CoRL 18, IROS 2019]



Data tor Robotics: Robo Turk

16 -

—_—
N
|

Dataset Size (Hours)

—i
N
|

—h
(@)
!

(00]
|

13.7

4.08
2.35
= -

JIGSAWS  Deep Imitation DAML MIME
Gao et al. Zhang et al. Yu, Finn et al. Sharma et al.
2014 2018 2018 2018

[CoRL 18, IROS 2019]



Data for

160

140

—L
N
(@)

—L
o
@)

80

60

Dataset Size (Hours)
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Robotics: Robo Turk
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Data for Robotics: RoboTurk Trained Policy Rallout

Imitation + RL
Task Performance vs. Number of Demonstrations
1000
800

Pure RL Nut Assembly
(Sparse Reward)

Number of Demonstrations Bin Picking

600

400

Task Performance

Distributed PPO with curriculum: 32 workers, 24/48 hours [CoRL 18, IROS 2019



Data tor

botics: Robo Turk

CoRL 2018, IROS 2019

Structured supervision for Robotics through scalable

crowdsourcing can empower ropot learming in complex tasks.



(Generalizable Autonomy in Rolbot Manipulation
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Opportunity: Personal Robotics

Instructional Youtube Video Where / How should Rosie start?
How to make Meatball Pasta”? What is the recipe”?
How to execute the plan®
How to plan?
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Grounding: SO many ways
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Generalizable Autonomy Iin Robot Manipulation

Failure

Person

Holds

Success

What makes an
object a hammer? State Change: Breaking Eggs

Higher-Order Semantics

* Perception for Physical Interaction » Transfer Learning with Formal Guarantees

« Reasoning through Learmed Dynamics ¢ Continual Skill Adaptation & Accumulation



Generalizable Autonomy In Robot Manipulation

Learning with Structured Inductive Bias and Priors

- Efficiency and Generalization

- GCombine: Domain Expertise + Data-Driven Methods



Generalizable Autonomy Iin Robot Manipulation
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