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Learning in Dynamic Environments
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Reinforcement Learning: Robots, Games, the VWorld

Robotics Game Play and Strategy
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Classes of Learning Problems

Supervised Learning

Data: (x,y)
X Is data, y is label

Goal: Learn function to map
X =Y

Apple example:

<

This thing Is an apple.
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Classes of Learning Problems

Supervised Learning Unsupervised Learning
Data: (x,y) Data: x
X Is data, y is label X 1s data, no labels!

Goal: Learn function to map Goal: Learn underlying
X =Yy structure

Apple example:

SO

(U

This thing Is an apple.

Apple example:

This thing Is like
the other thing.

I II- mm  Massachusetts 65191 Introduction to Deep Learning

II '::ﬁﬁﬂt!f:gn:r &0 introtedeeplearning.com W @MITDeeplearning /26122




Classes of Learning Problems

Supervised Learning Unsupervised Learning  Reinforcement Learning
Data: (x,y) Data: x Data: state-action pairs
X Is data, y is label X 1s data, no labels!
Goal: Learn function to map Goal: Learn underlying Goal: Maximize future rewards
X =Yy structure over many time steps
Apple example: Apple example: Apple example:
SUTIC This thing is like tat this thing because it
This thing is an apple. the other thing. will keep you alive.
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Classes of Learning Problems

Reinforcement Learning

Data: state-action pairs

RL: our fOCUS tOday. Goal: Maximize future rewards

over many time steps

Apple example:

.

cat this thing because it
will keep you alive.
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Reinforcement Learning (RL): Key Concepts

Agent: takes actions.
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Reinforcement Learning (RL): Key Concepts

ENVIRONMENT

Environment: the world In which the agent exists and operates.
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Reinforcement Learning (RL): Key Concepts

Action: ay ENVIRONMENT

ACTIONS

Action: a move the agent can make In the environment.
Action space A:the set of possible actions an agent can make In the environment
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

Action: a;

ENVIRONMENT

ACTIONS

Observations: of the environment after taking actions.
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 4 1

Action: a;

ENVIRONMENT

ACTIONS

State: a situation which the agent percelves.
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 4 1
Reward: 7%
Action: a; ENVIRONMENT

ACTIONS

Reward: feedback that measures the success or fallure of the agent's action.
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 4 1
Reward: 7%
AGENT Action: ay ENVIRONMENT

ACTIONS

Jlotal Reward
Return

1=t

L§
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: St 4 1
Reward: 7%
AGENT Action: ay ENVIRONMENT

ACTIONS
Total Reward N
(Return) "~
Ry = Z i = T+ Tegq eent Tpgpq + o
1=t
= ® roo a0 Do ey




Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 4 1
Reward: 7%
AGENT Action: ay ENVIRONMENT

ACTIONS

Discounted

o0
Jotal Reward \ j
(Return) Ry = Z YT
1=t
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Reinforcement Learning (RL): Key Concepts

OBSERVATIONS

State changes: S¢ 4 1
Reward: 7%
AGENT Action: ay ENVIRONMENT

ACTIONS

Discounted
Jotal Reward N
(REtUI'I'I) Rt — }’ T[ ) 4 Tt ~+ ]/ Tt+1 .+ ‘y Tt+ﬂ. + ...

Y. discount factor; 0 <y <1
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Defining the Q-function

Re =1 + YTesq +Y2Tt+2 T

lotal reward, Ry, 1s the discounted sum of all rewards obtained from time ¢t

Q(St ar) = E|R¢|s, at)

The Q-function captures the expected total future reward an
agent In state, s, can receive by executing a certain action, a
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How to take actions given a Q-function?

Q (5S¢ ar) = E|R¢|se, a;]

(state, action)

Ultimately, the agent needs a policy m(s), to infer the best action to take at its state, s

Strategy: the policy should choose an action that maximizes future reward

n*(s) = argmax Q(s, a)
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Value Learning

Find Q (s, a)

a = argmaxQ(s,a)
a

\\

Deep Reinforcement Learning Algorithms

®

Policy Learning

Find (s)

Sample a ~ m(s)

=




Deep Reinforcement Learning Algorithms

~
Value Learning
Find Q (s, a)
a = argmax Q(s, a)
a
.




Digging deeper into the Q-function

Example: Atari Breakout

Il ICH B — I .
't can be very difficult for humans to

_ accuratew - Qwva}u ]
|

Which (s, a) pair has a
higher Q-value! T
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Digging deeper into the Q-function

Example: Atari Breakout - Middle
't can be very difficult for humans to
_ accurately estimate Q-values

Which (s, a) pair has a
higher Q-value! T

—
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Digging deeper into the Q-function

Example: Atari Breakout - Side

't can be very difficult for humans to
_ accurately estimate Q-values

T —" L — |
i

Which (s, a) pair has a
higher Q-value! T

—
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Deep Q Networks (DQN)

How can we use deep neural networks to model Q-functions!?

4 N

Action + State =2
i Expected Return
state, § Dee
NNP — Q(s,a)
‘maove I
right”
action, a
. Input Agent Output
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Deep Q Networks (DQN)

How can we use deep neural networks to model Q-functions!?

4 N
Action + State =
Expected Return
state, § Deep
NN Q(s,a)
‘move I
right”
action, a
. Input Agent Output

I I II Bl Massachuseils
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State = Expected Return for Each Action
Q (5! ﬂ‘l)
_ Deep Q(s,az)
NN
stale, S Q(s, aﬂ)
N Input Output
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!?

' | ke 7 W
— Action + State > State = Expected Return for Each Action
Expected Return
Q (Sr ﬂ'l)
state, S D{\Tfip — (31 {1) il DEEF} Q{S, ﬂE]
| NN
‘move
right” state, S Q(s,an)
action, a
. Input Agent Output N Input Agent Output

What happens if we take all the best actions!?

Maximize target return = train the agent
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!?

4 N 4 N
N Action + State State = Expected Return for Each Action
Expected Return
Q (Sr ﬂ'l)
state, S Dﬁrip — Q (3, {1) i DEEP Q{S, ﬂz]
| NN
‘move
right” state, S Q(s,an)
action, a
. Input Agent Output N Input Output
rarget
' Take all the best actions =
+ymaxQ(s',a’)
P ) = target return
Illil- EEETEE ::Em = o iﬂ';ﬁ:‘iﬂ“ “.SEMT;EELEWHE Mnih+ Nature 2015, 1/26/22




Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!?

o | k- - B
—— Action + State = State = Expected Return for Each Action

- Expected Return
| Q (S ’ ﬂ'l)

state, S Dee prm e
NNP — 0(s,a) i DEE[.'J Q(s,az)
| NN
‘move
right” state, S Q(s,an)
action, a
. Input Agent Output N Input
predicted
/_H
Q(s,a) prediction
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Deep Q Networks (DQN): Training

How can we use deep neural networks to model Q-functions!?

4 N 4 N

Action + State =2 State = Expected Return for Each Action
Expected Return

1 Q(s,a;)

state, s Deep

NN —_— Q(S, {I) i Dr\frip Q(5; ﬂz]
‘move |
right” state, S Q(s,an)
action, a
. Input Agent Output § Input Output
target predicted
2
L= ]E[H(r-i—ymax@(s',a’))—Q(s,a)H ] Q-Loss
al
Illil- EEEEEEEEM @ iﬂtmtjjﬂtzit\ﬂlamnﬂﬁdgﬁ;ﬂn EEEEMLFES;EELEammg Mrih+ Nature 2015, 1/26(2.




Deep Q Network Summary

Use NN to learn Q-function and then use to infer the optimal policy, (s)

state, s Q(s,a;) = 20
<~ \
S E?\Tp Q(& {12) = 3 . Rls)= arg;nax@(s, a)
/ = a; {m
Q{S, ﬂ'E) =0
=

Send action back to environment and receive next state
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DQOQN Atari Results
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Downsides of Q-learning

Complexity:
* (Can model scenarios where the action space Is discrete and small
* Cannot handle continuous action spaces

Flexibility:
* Policy Is deterministically computed from the Q function by maximizing the
reward =2 cannot |learn stochastic policies

To address these, consider a new class of RL training algorithms:
Policy gradient methods
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Deep Reinforcement Learning Algorithms

4 o
Policy Learning

Find (s)

Sample a ~ m(s)




Deep Q Networks (DQN)

DQN: Approximate Q-function and use to infer the optimal policy, m(s)

Q(:Sl ﬂl] — ZU

© N
Deep

" Q(s,az) =3 — n(s) = argmaxQ(s,a)
e a
/ — 4 <:—
state, S Q(SE};) =0
| £ — 65191 Introduction to Deep Learn
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Policy Gradient (PG): Key ldea

Policy Gradient: Directly optimize the policy (s)

Z P(ayls) = 1

P(ﬂllﬂ] —09 HLEA
Deep P{ﬂzlg) -0 1 . rr(S) P(al|s)
= a) ¢m
state, § P(ﬂﬂ-ﬂ -

e VWhat are some advantages of this formulation!?

III-— Massachusatts 6519] Intm-clu:l:innt::rDeepbearning

ll ‘:* :1“ t1 g:r &0 introtedeeplearning.com W @MITDeeplearning /26/22




Discrete vs Continuous Action Spaces

Discrete action space: which direction should | move! =

state, s x Li>

Left Stay Right
T e 65191 Introduction to Deep Learning
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Discrete vs Continuous Action Spaces

Continuous action space: how fast should | move!? @? ms |

P(als)

A

Faster m l = Faster
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Policy Gradient (PG): Key ldea

Policy Gradient: tnables modeling of continuous action space

fi_ P(als) =1

3 J

Y

Mean,u = —1 \

Deep P(a|s) = N(u,0?)
e
NN / m(s) ~ P(als)
Variance, 02 = 0.5 = —0.8 [m/s]
state, s 4 P(al|s) = N(u,0%)
-1
Fast -ast
Lot O B gt
BEN Massachusetts 65191 Introduction to D Learn
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Training Policy Gradients: Case Study

Reinforcement Learning Loop: Case Study — Self-Driving Cars

OBSERVATIONS

State changes: 8¢ 4 1 Agent: vehicle

. Rheward: 1 State: camera, lidar; etc
A Action: steering wheel angle
Action: a; Reward: distance traveled

ACTIONS
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Training Policy Gradients

Training Algorithm
. Inrtialize the agent

2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probabllity of actions that
resulted In low reward

D. Increase probability of actions that
resulted In high reward
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Training Policy Gradients

Training Algorithm
. Inrtialize the agent
2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probabllity of actions that
resulted In low reward

D. Increase probability of actions that
resulted In high reward
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Training Policy Gradients
D

Training Algorithm

. Inrtialize the agent
2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probabllity of actions that
resulted In low reward

D. Increase probability of actions that
resulted In high reward
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Training Policy Gradients

Training Algorithm
. Inrtialize the agent
2. Run a policy until termination

3. Record all states, actions, rewards

4. Decrease probabllity of actions that
resulted In low reward

D. Increase probability of actions that

resulted in high reward %
BE Massachusetts 65191 Introduction to DEEP Learn'rng
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Training Policy Gradients

Training Algorithm

log-likelihood of action
. Inrtialize the agent

loss = —log P(a;|s;) R,
2. Run a policy until termination reward

3. Record all states, actions, rewards

4. Decrease probabllity of actions that Gradient descent update:

. | — —
resulted in low reward w =w — Vloss

w' =w +|Vlog P(a;|s:) R

J. Increase probability of actions that Policy. gradient

resulted In high reward

I II- mm  Massachusetts 65191 Introduction to Deep Learning
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Reinforcement Learning in Real Life

Training Algorithm

. Inrtialize the agent

2. Run a policy until termination

——

3. Record all states, actions, rewards o
4. Decrease probability of actions that TR e
resulted in low reward e -

J. Increase probability of actions that
resulted In high reward
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Data-driven Simulation for Autonomous Vehicles

VISTA: Photorealistic and high-fidelity simulator for training and testing self-driving cars

IIIHF anl

[IIJ |!|-
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Deploying End-to-End RL for Autonomous Vehicles

Policy Gradient RL agent trained
entirely within VISTA simulator

S --:.'.I -!'t.
157 ."jlll'-":."'"- s i i L I

e e [ End-to-end agent directly
Boral AR deployed into the real-world

First full-scale autonomous
vehicle trained using RL
entirely in simulation and
deployed in real life!

s
B Massachusetts
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Deep Reinforcement Learning Applications




Reinforcement Learning and the Game of Go
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The Game of Go

Aim: Get more board territory than your opponent.

5 e Positions 31" 7% Legal Legal Positions
% 2 { x| 3| 33.33% \
. — <3
i ] | L R ee 2%2 - 8l | 7037% 57
0 o 900 33 19,683 | 64.40% 12,675
® - :1.13 4x4 43,046,721 | 56.49% 24,318,165
o 1P105)8, 08 5% 5 847,288,609,443 | 48.90% 414,295,148,741
i S += .-ll- :
Yo o0 o 9%9 4434264882x 1038 | 23.44% | 1.03919148791x 1038
'+ *h.fﬂr i'f++ .+ . a0 O 79
BEOOSE LI 3% 13 4300233593x 10%0 |  8.66% |  3.72497923077% 10
9% 19 | .740896506% 10'72 | 1.20% | 2.08168199382x |0!70

Greater number of legal board positions than atoms in the universe.
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL
positions policy network policy network Self-play data Value network

Classification m m fL 1 Y% Regression
c € ANl ¢ o
= Play Play i —

{Eﬁﬁ.ﬂﬂ;’; &0 introtedeeplearning.com W @MITDeeplearning
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL
positions policy network policy network Self-play data Value network

{PRNRL wieble: [_,%l_‘i__ | witeten )
P _ o _ B W . o _
4 Jees Classification n A O Regression
e ) e e =-' - SEIf SEIf - it o HE ‘ -
&/ &) S0 5 Al

e

]

|) Initial training: human data
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AlphaGo Beats Top Human Player at Go (2016)

Human expert Supervised Learning RL
positions policy network policy network Self-play data Value network
—Fl)trl-l—’l . l_e%!_.,i_. B
IL "JREE ] 3 i."i_-] Ii_ |

&

 Classification n
- ol

A ,:E“l--- L % Regression
‘Play ’ L elogad |

1=
! I

+++++

|) Initial training: human data

g W 8 v @ 7

2) Self-play and reinforcement learning
- super-human performance
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Human expert

pusitiuns
LRI SeE
ST 1-,

3":

| :-

+++++

Supervised Learning RL

policy network

C|EIEEIfIEE1tIDI‘I

=

N
\ &/

|) Initial training: human data

g W 8 v @ 7

2) Self-play and reinforcement learning

- super-human performance \ )

I - Massachusells
Institute of
Technology

policy network

m
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AlphaGo Beats Top Human Player at Go (2016)

Self-play' data Value network

i__| “I e |

Regression

|- o i
i i
LE [
. |
---- ! I B ] N .-1-
| i L o
| I g |
s 1| ™
. | |
_I.-I- .I II-. Iu I. .
| Pt
ju o i II I * b .I :
| | I
I ] I n I
d N i

3) “Inturtion” about board state

Silver+ Science 2016, /26722



AlphaZero: RL from Self-Play (2018)
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MuZero: Learning Dynamics for Planning (2020)
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Domain Known

Go knowledga  rules Go Chess shogi

AlphaZero masters three perfect information games
using a single algorithm for all games
(Dec 2018, Science)

AlphaGo becomes the first program 1o master Go using
neural networks and tree search
(Jan 2016, Nature)

| EFpHIEIGﬂ Zaro Go MulZero Go Chess Shog Atmri
J..:i=. ﬁ.‘
W
AlphaGo Lero learns to play completely on its own, MulZero learns the rules of the game, allowng it 1o alsc
without human knowledge master environments with unknown dynamics.
({Oct 2017, Nature) (Dec 2020, Nature)
BE Massachusetts i | . ok,
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MuZero: Learning Dynamics for Planning (2020)

How MuZero acts in its environment:
|) Observe  2) Search  3) Plan 4) Act

65191 Introduction to Deep Learning
&0 introtedeeplearning.com W @MITDeeplearning

schrittwieser/Antonoglou/Hubert+ Nature 2020, /26722




Deep Reinforcement Learning: Summary

* Agents acting In * Q function: expectea * Learn and optimize the
environment total reward given s, a policy directly

» State-action pairs =2 * Policy determined by * Applicable to
maximize future rewards selecting action that continuous action

» Discounting maximizes Q function spaces

I II"' o TRARRNCRASI. 65191 Introduction to Deep Learning

II ':f:ﬁﬁﬂt!f:gn:r &0 introtedeeplearning.com W @MITDeeplearning /26122




6.5191:
Introduction to Deep Learning

Lab 3: Reinforcement Learning

Link to download labs:
http://introtodeeplearning.com#schedule

1. Open the lab in Google Colab
2. Start executing code blocks and filling in the #1ODOs
3. Need help? Come to 10-250/Gather Town!




