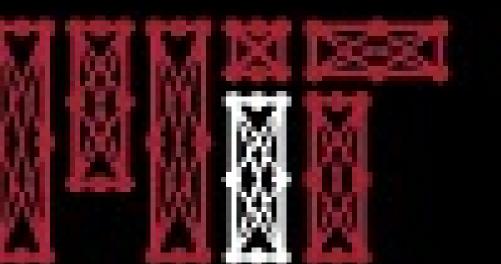
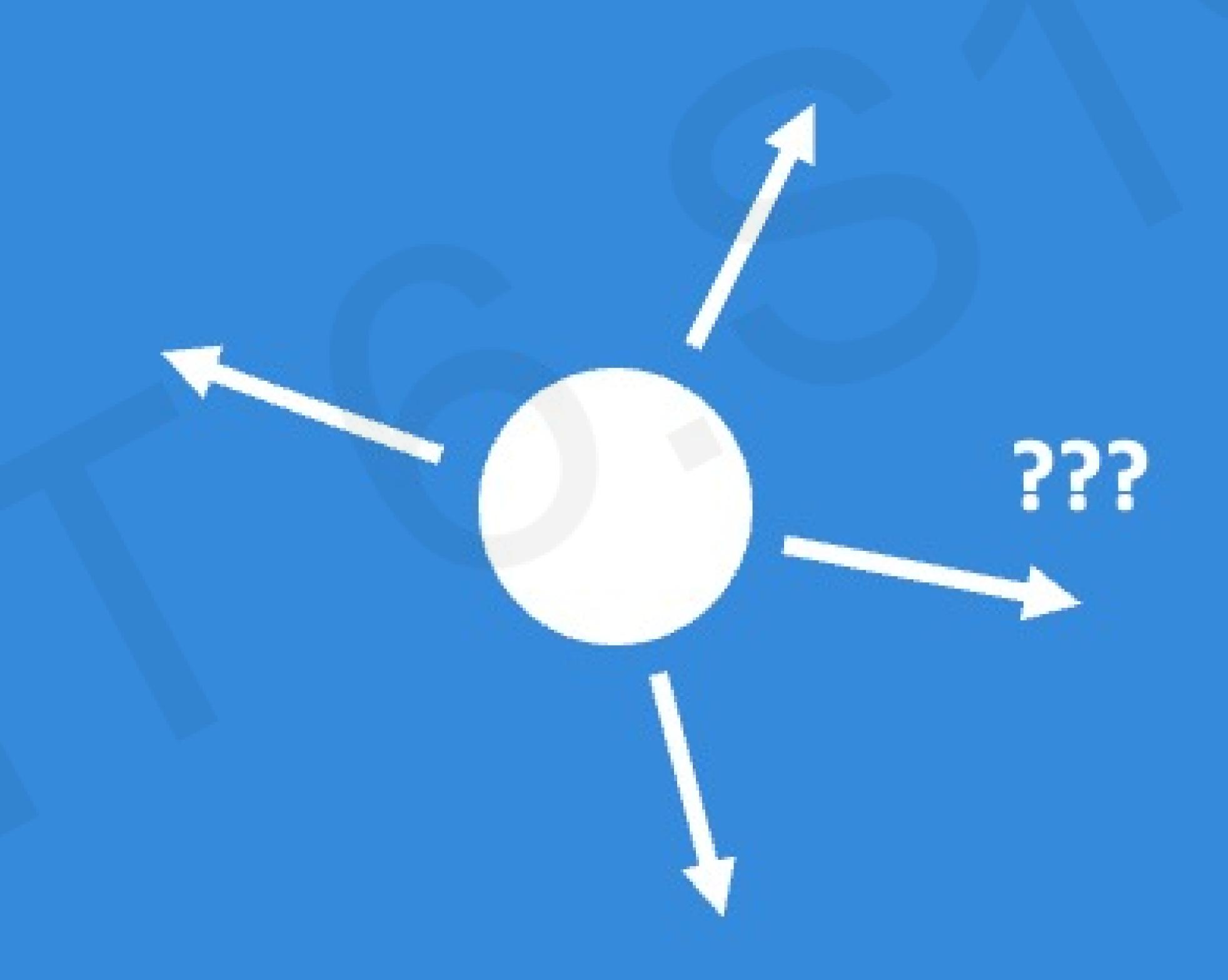
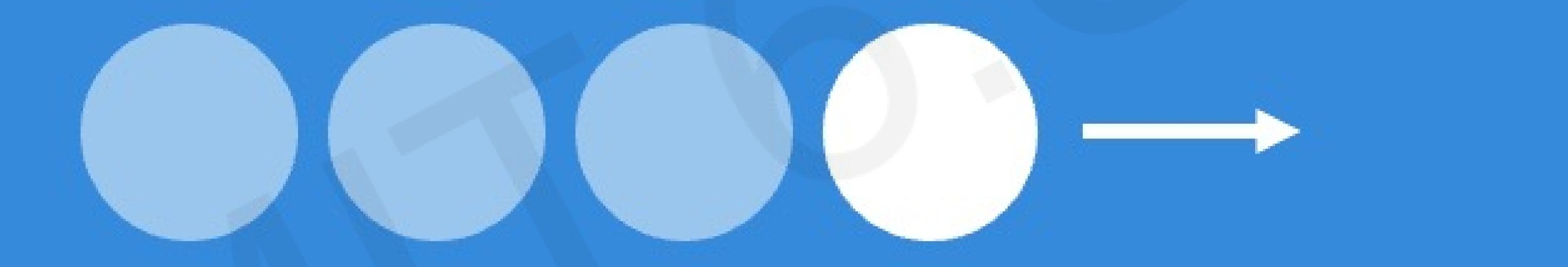


Deep Sequence Modeling

Ava Amini MIT Introduction to Deep Learning January 8, 2024



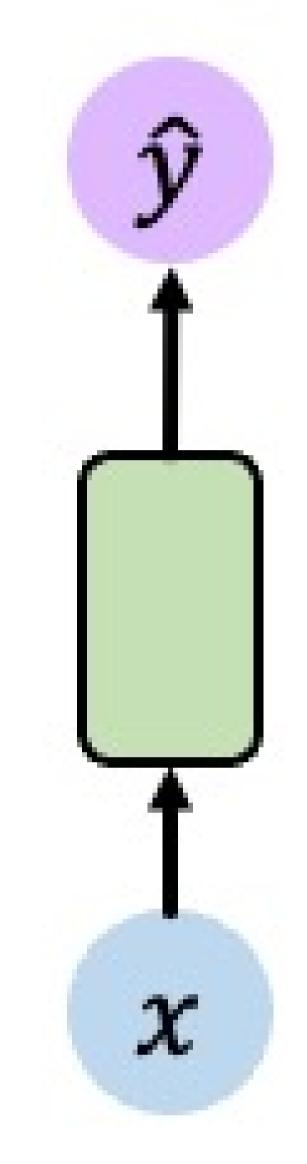




Sequences in the Wild

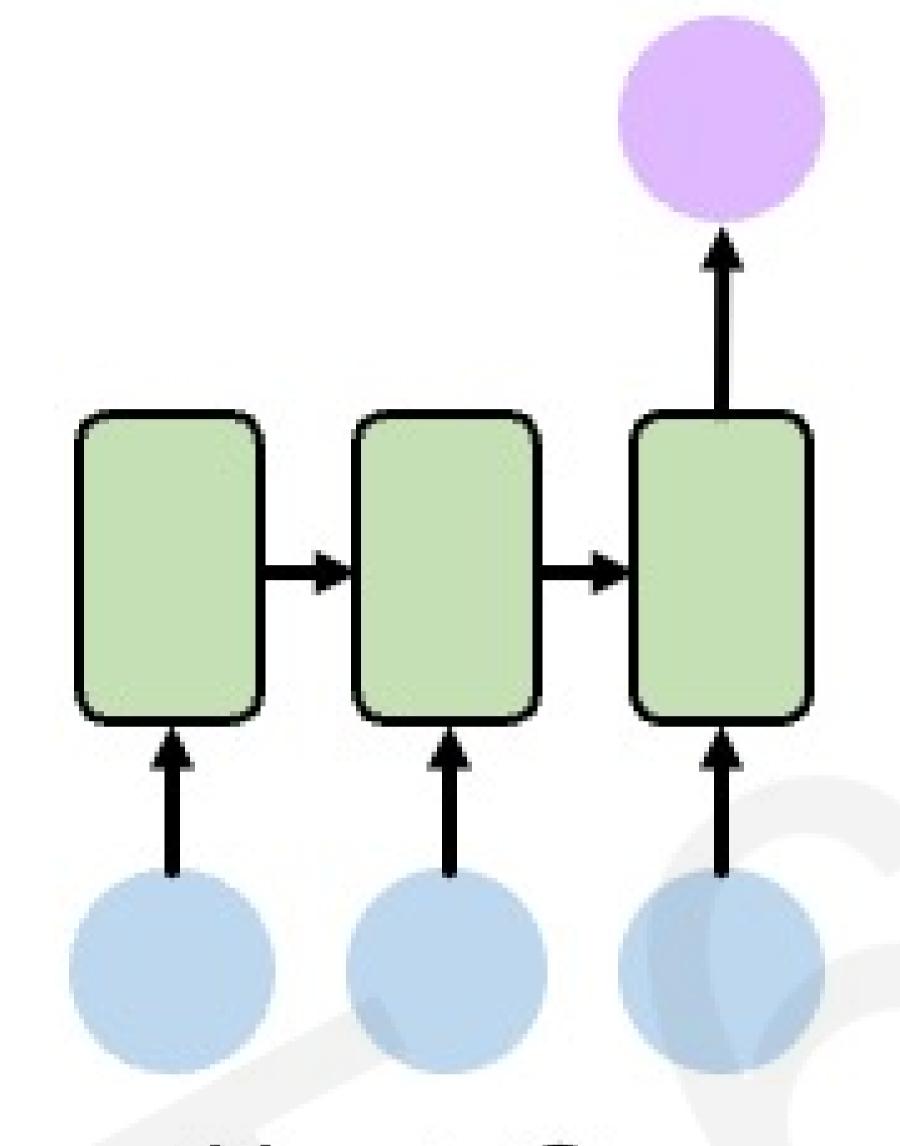
Sequences in the Wild

Sequence Modeling Applications

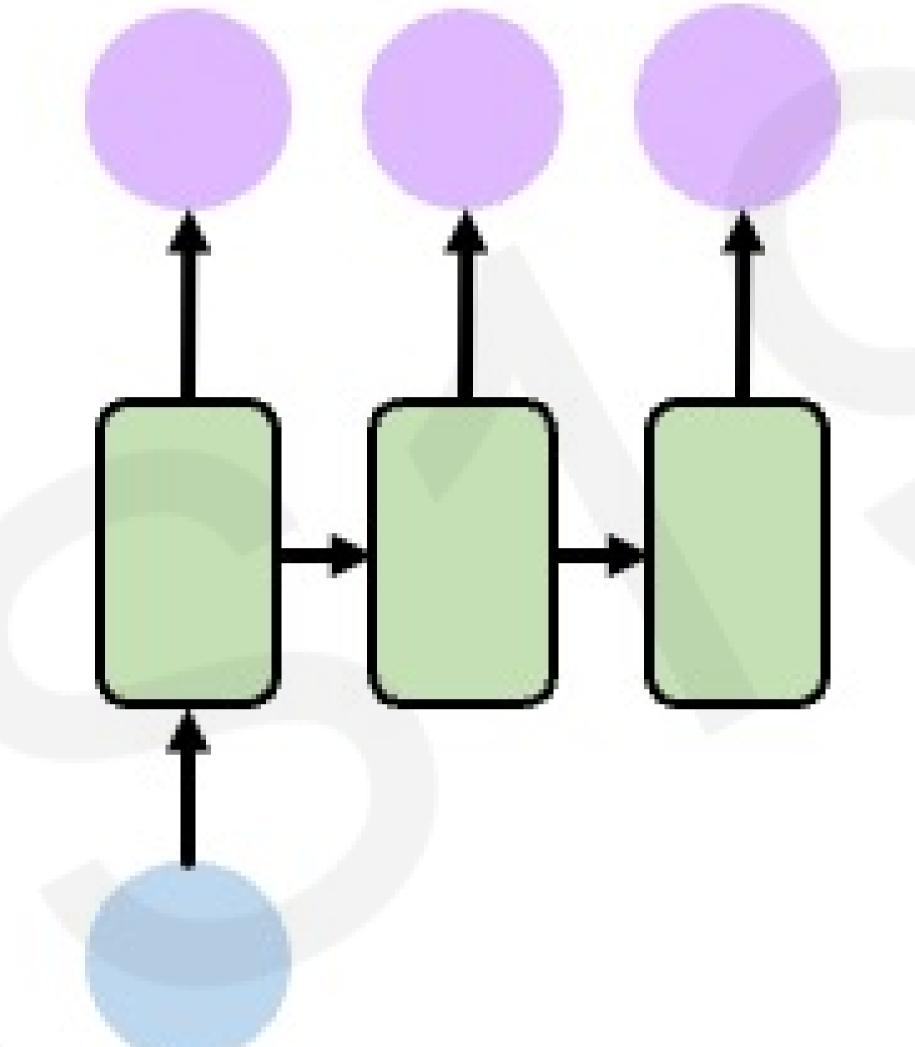


One to One Binary Classification

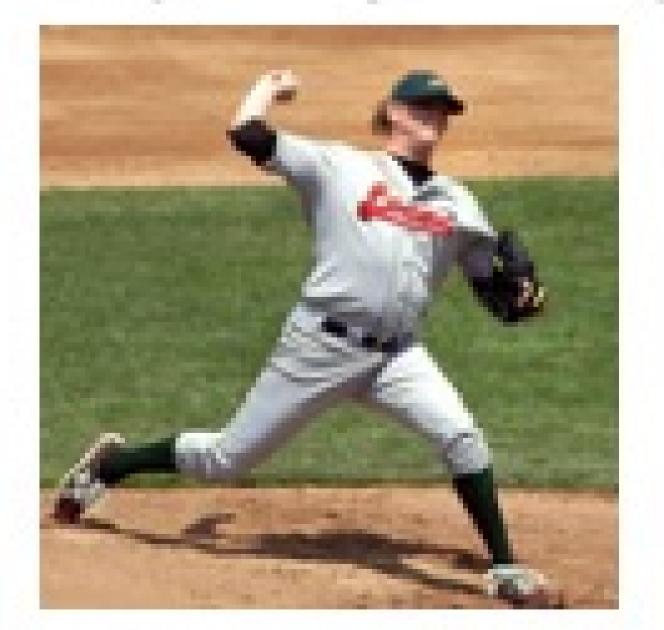
"Will I pass this class?" Student -> Pass?



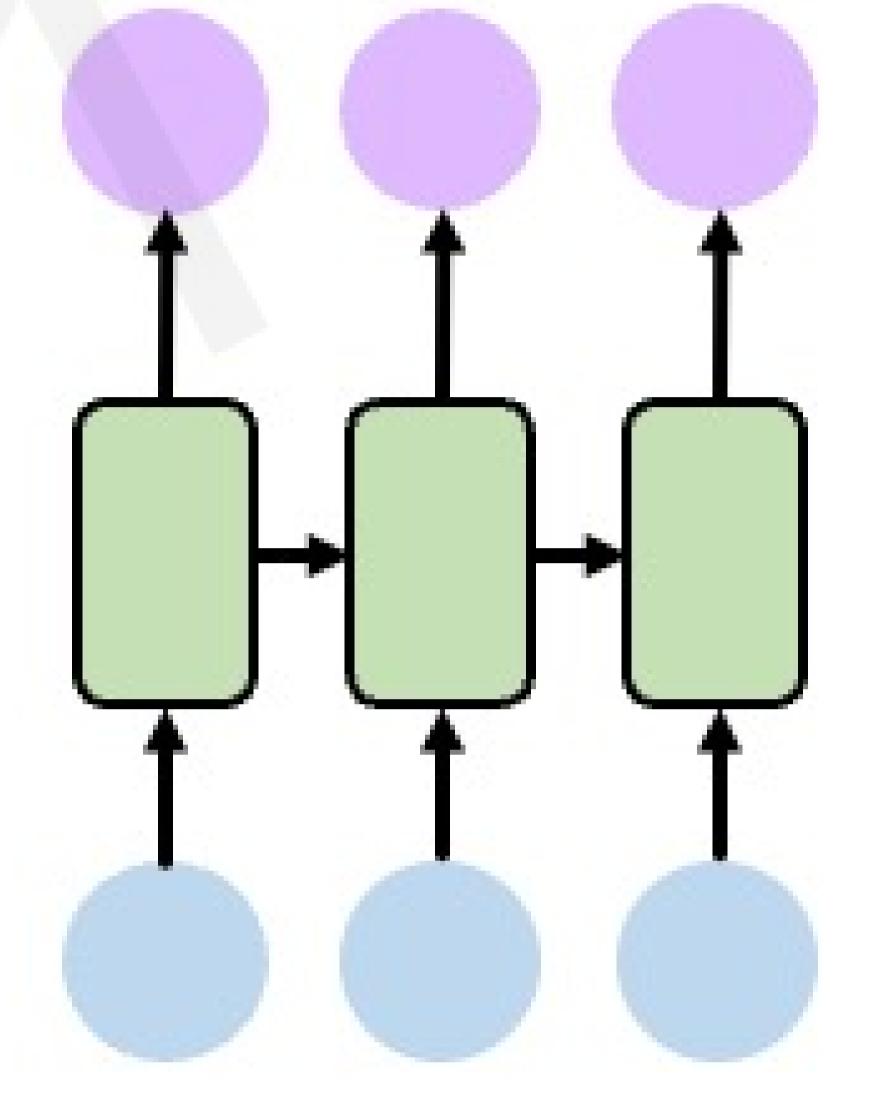
Many to One Sentiment Classification



One to Many Image Captioning



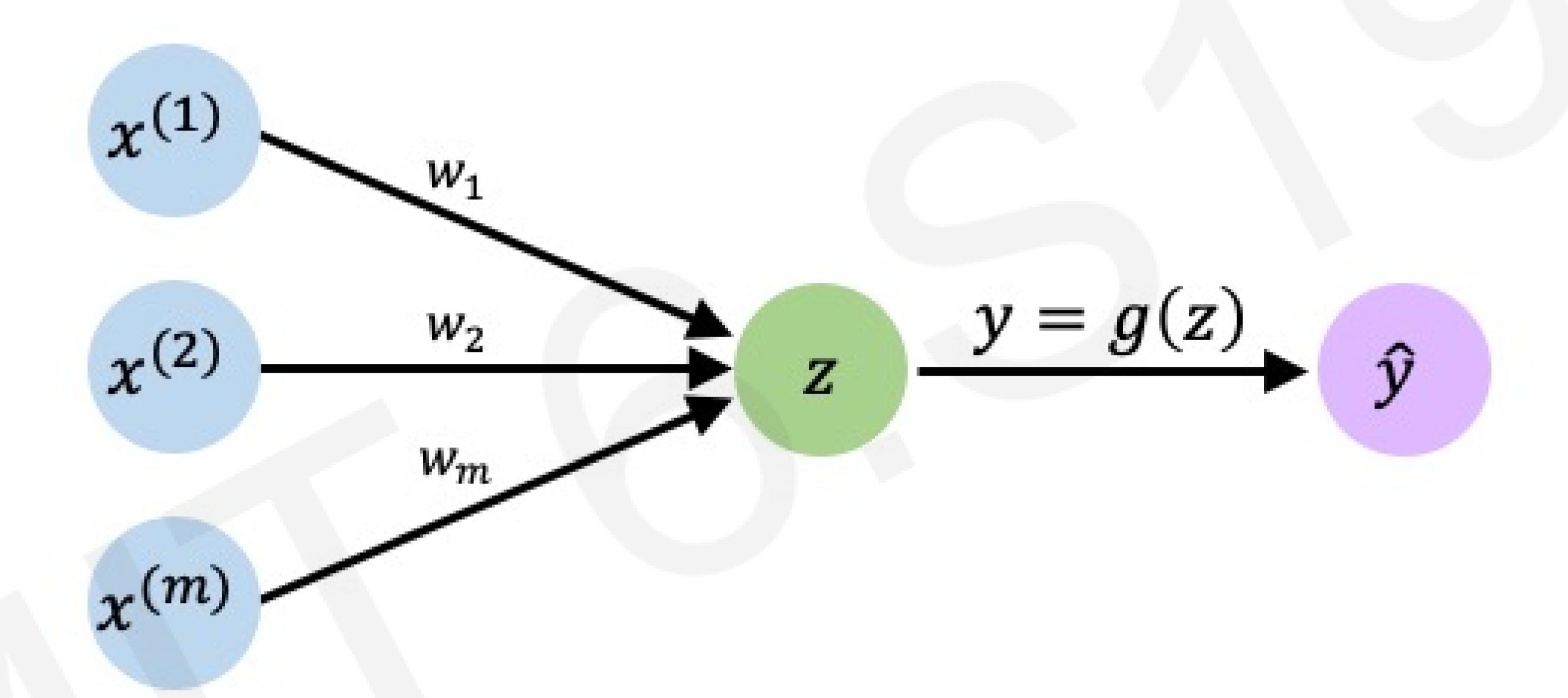
"A baseball player throws a ball."



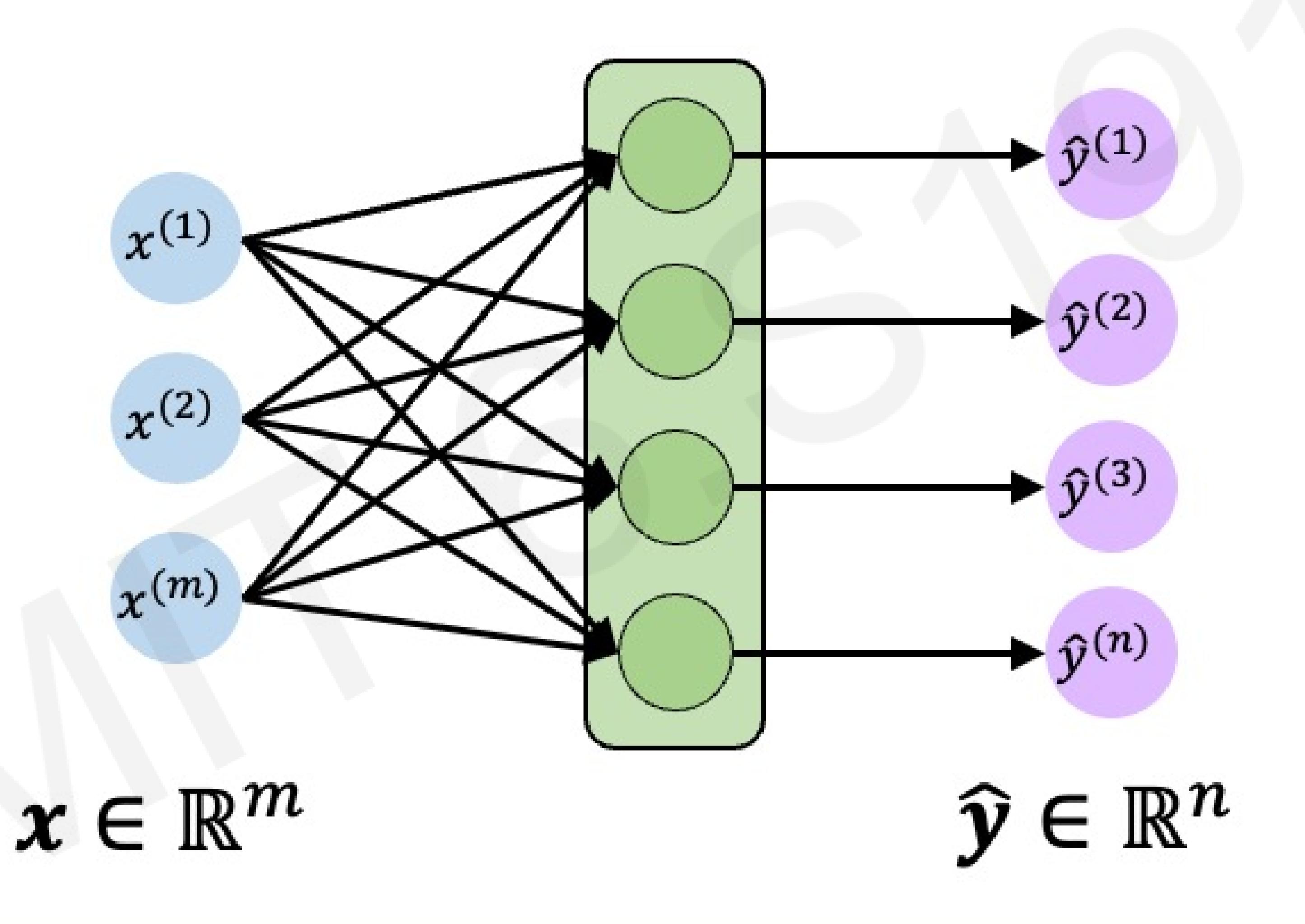
Many to Many Machine Translation

Neurons with Recurrence

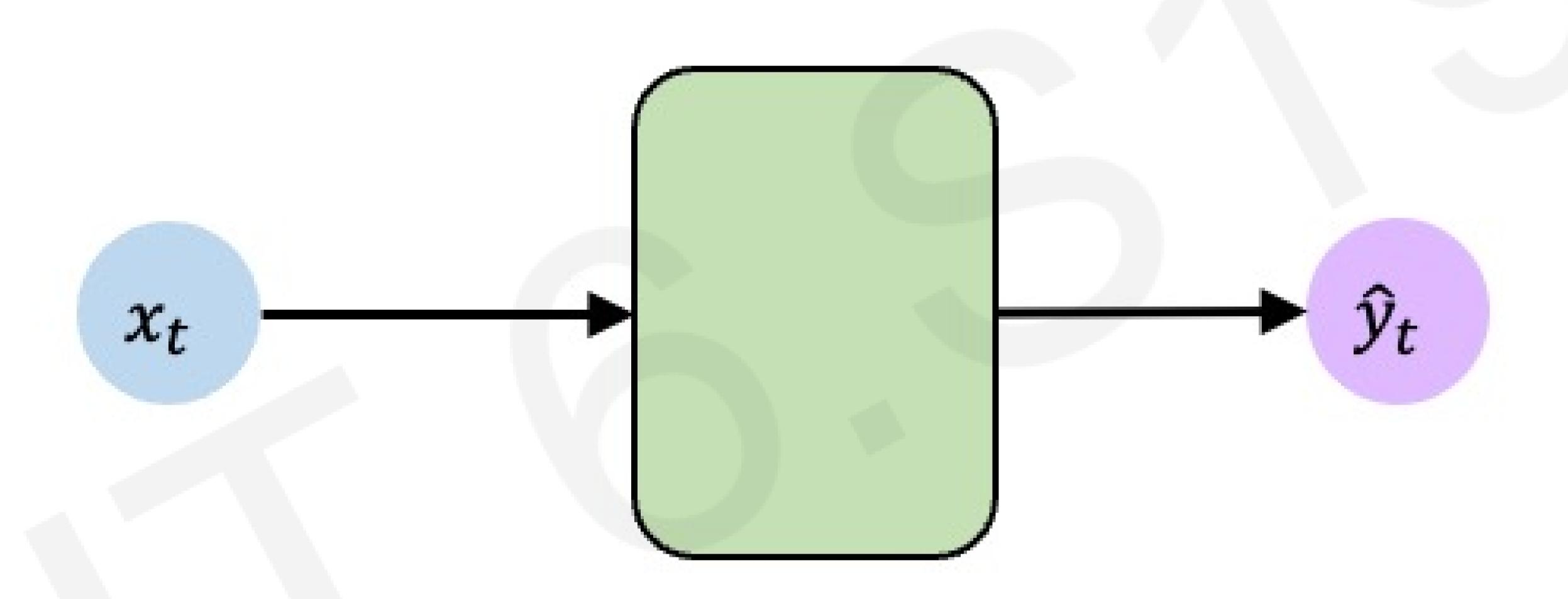
The Perceptron Revisited



Feed-Forward Networks Revisited



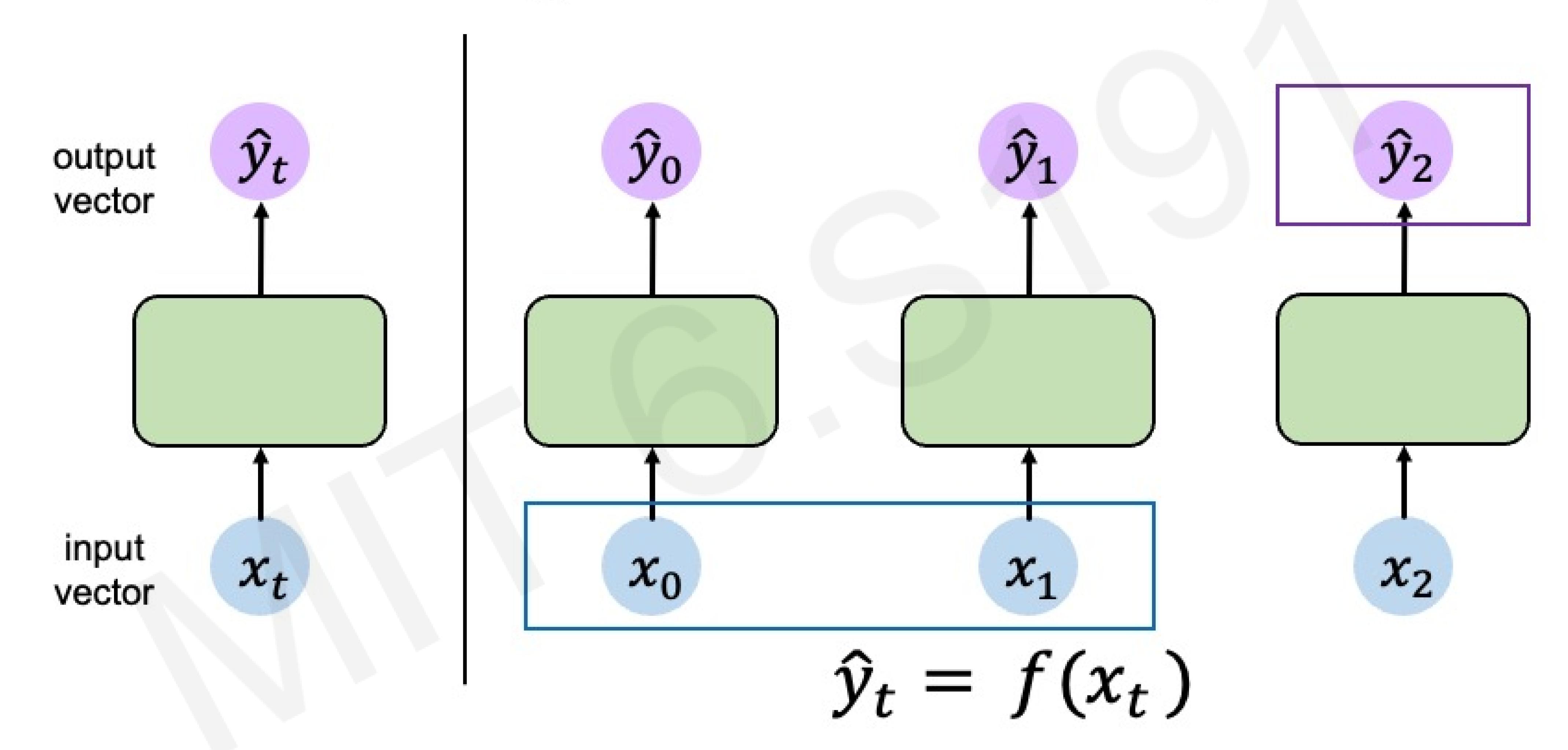
Feed-Forward Networks Revisited



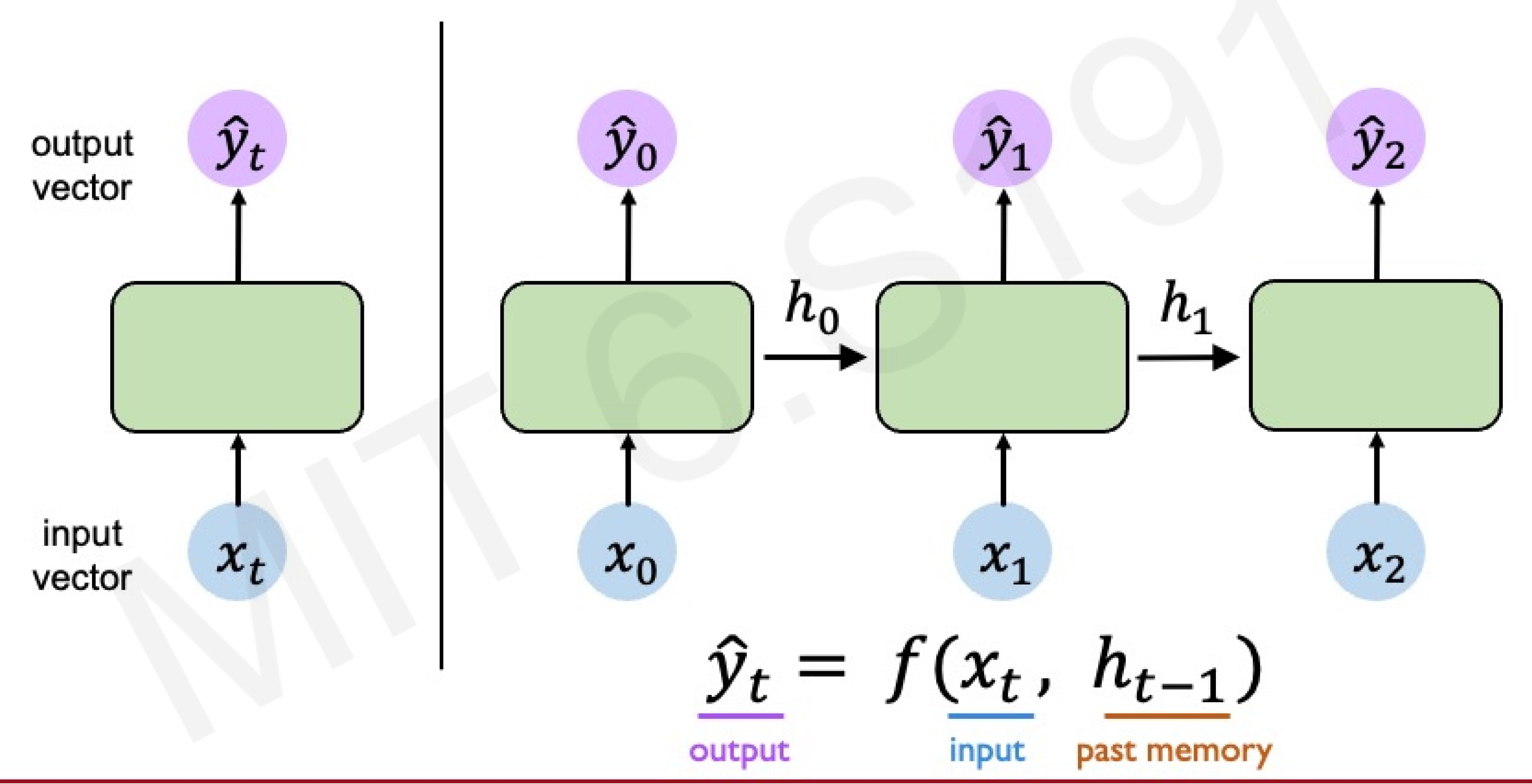
$$x_t \in \mathbb{R}^m$$

$$\hat{y}_t \in \mathbb{R}^n$$

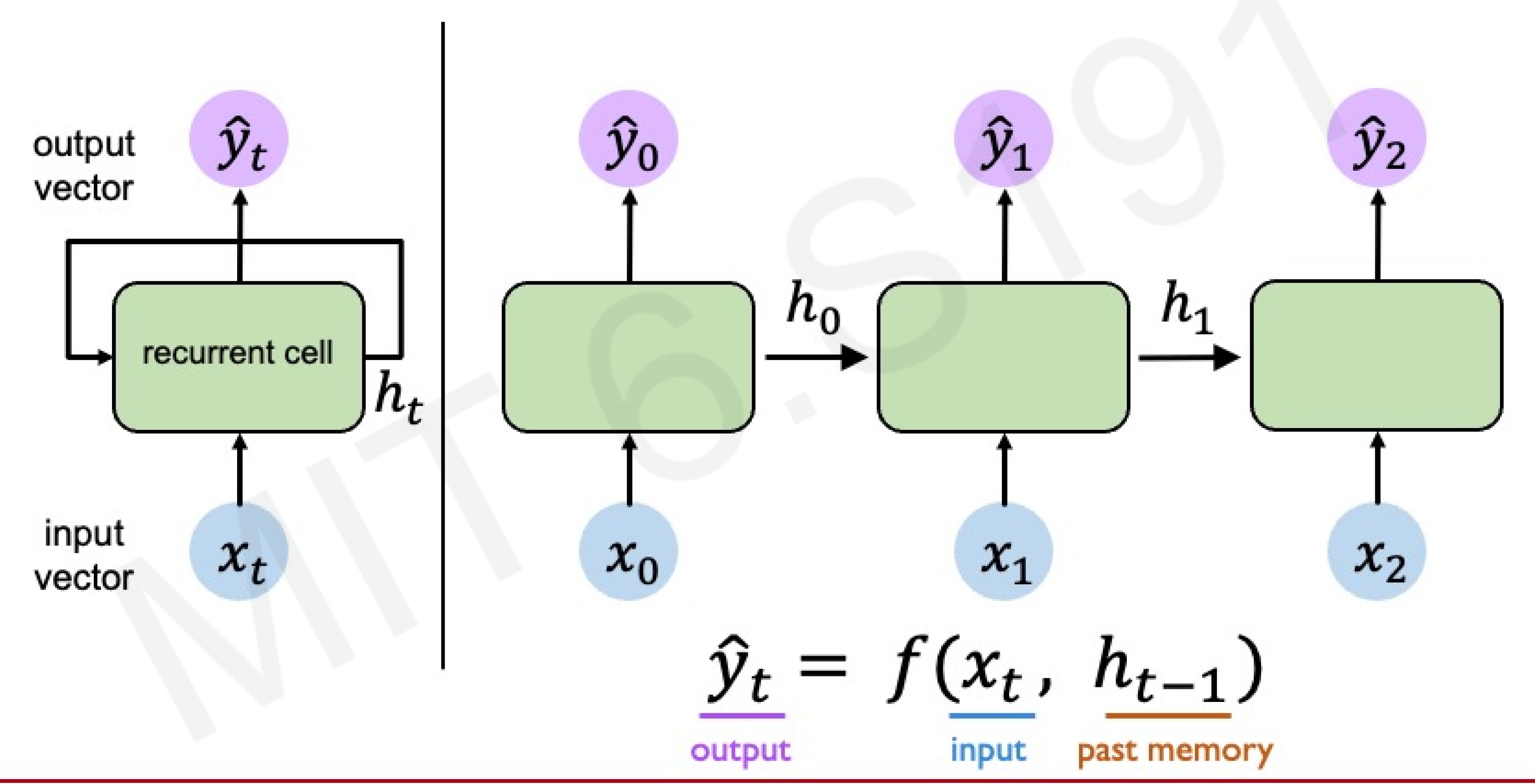
Handling Individual Time Steps



Neurons with Recurrence

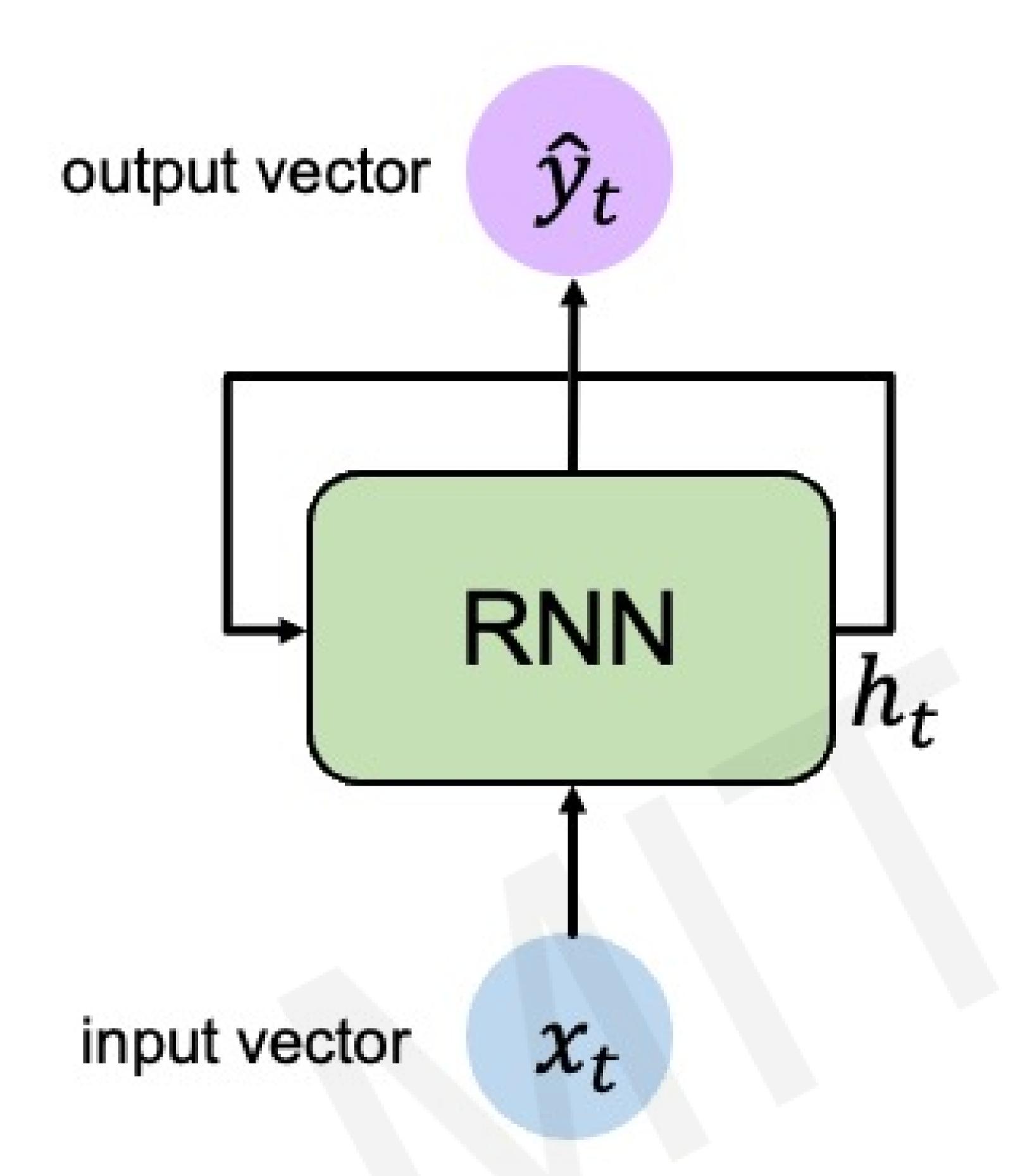


Neurons with Recurrence



Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)



Apply a recurrence relation at every time step to process a sequence:

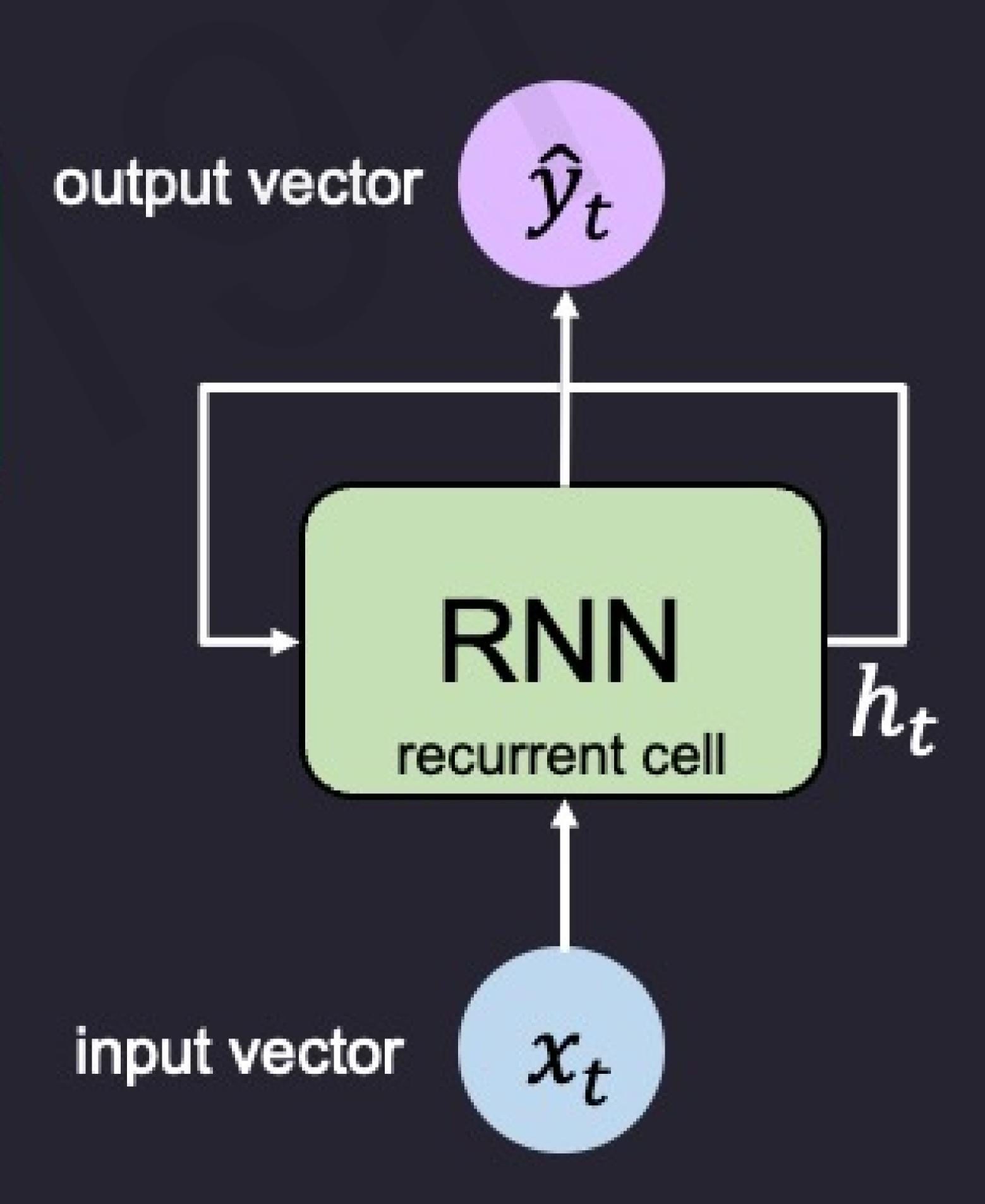
$$h_t = f_W(x_t, h_{t-1})$$
cell state function input old state with weights w

Note: the same function and set of parameters are used at every time step

RNNs have a state, h_t , that is updated at each time step as a sequence is processed

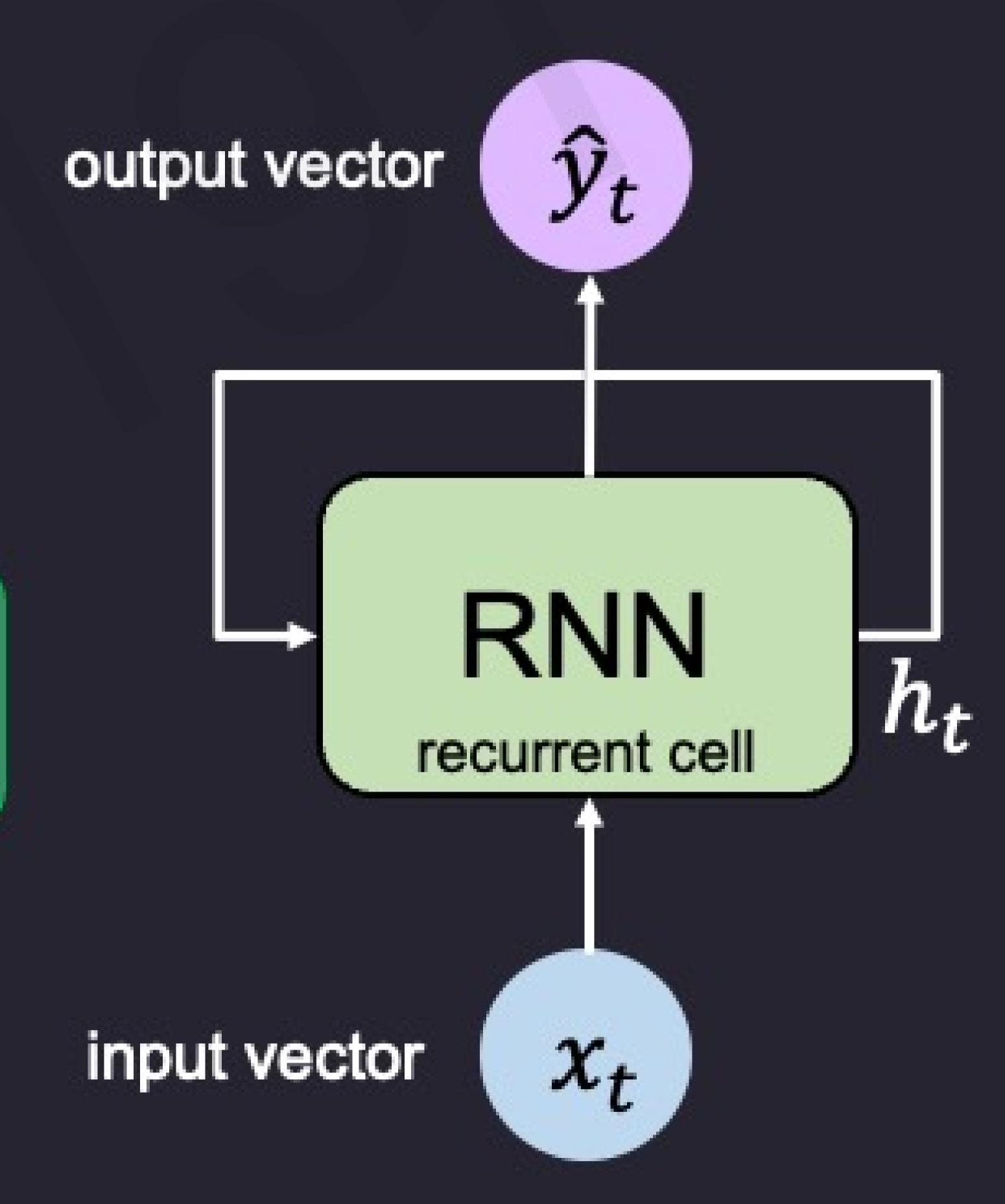
RNN Intuition

```
my rnn - RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden state = my rnn (word, hidden state)
next word prediction = prediction
# >>> "networks!"
```



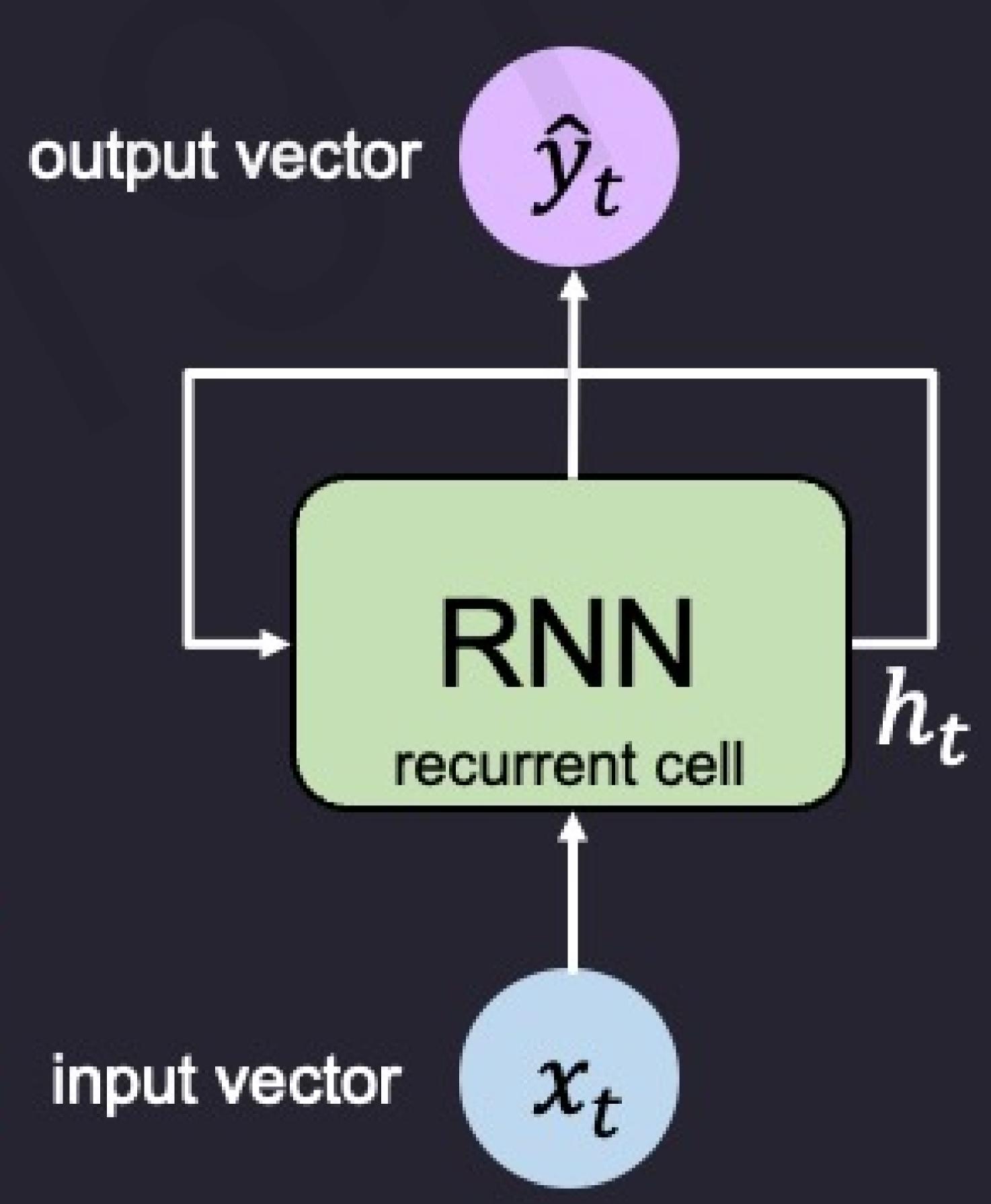
RNN Intuition

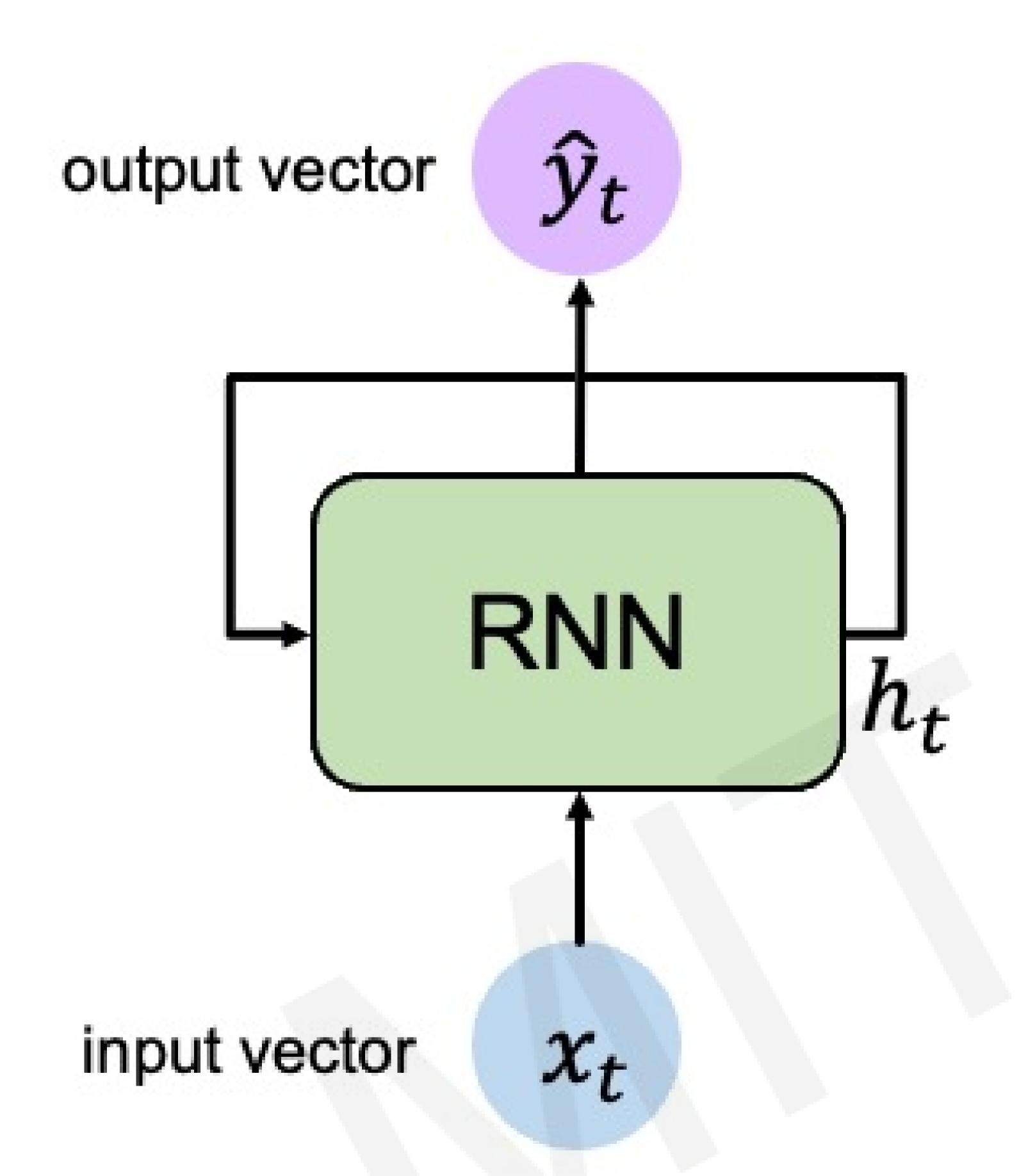
```
my rnn = RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden state = my rnn (word, hidden state)
next word prediction - prediction
# >>> "networks!"
```

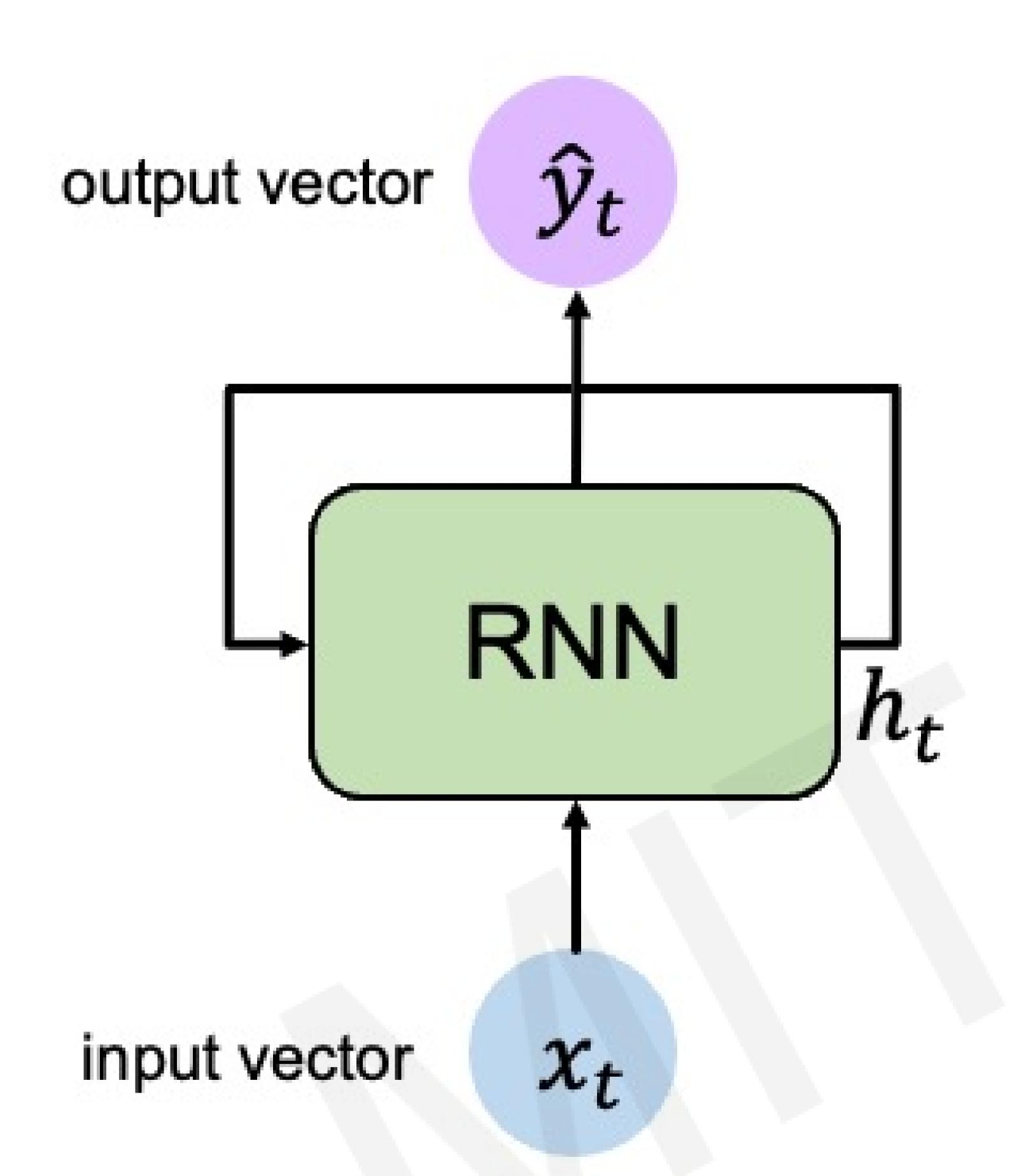


RNN Intuition

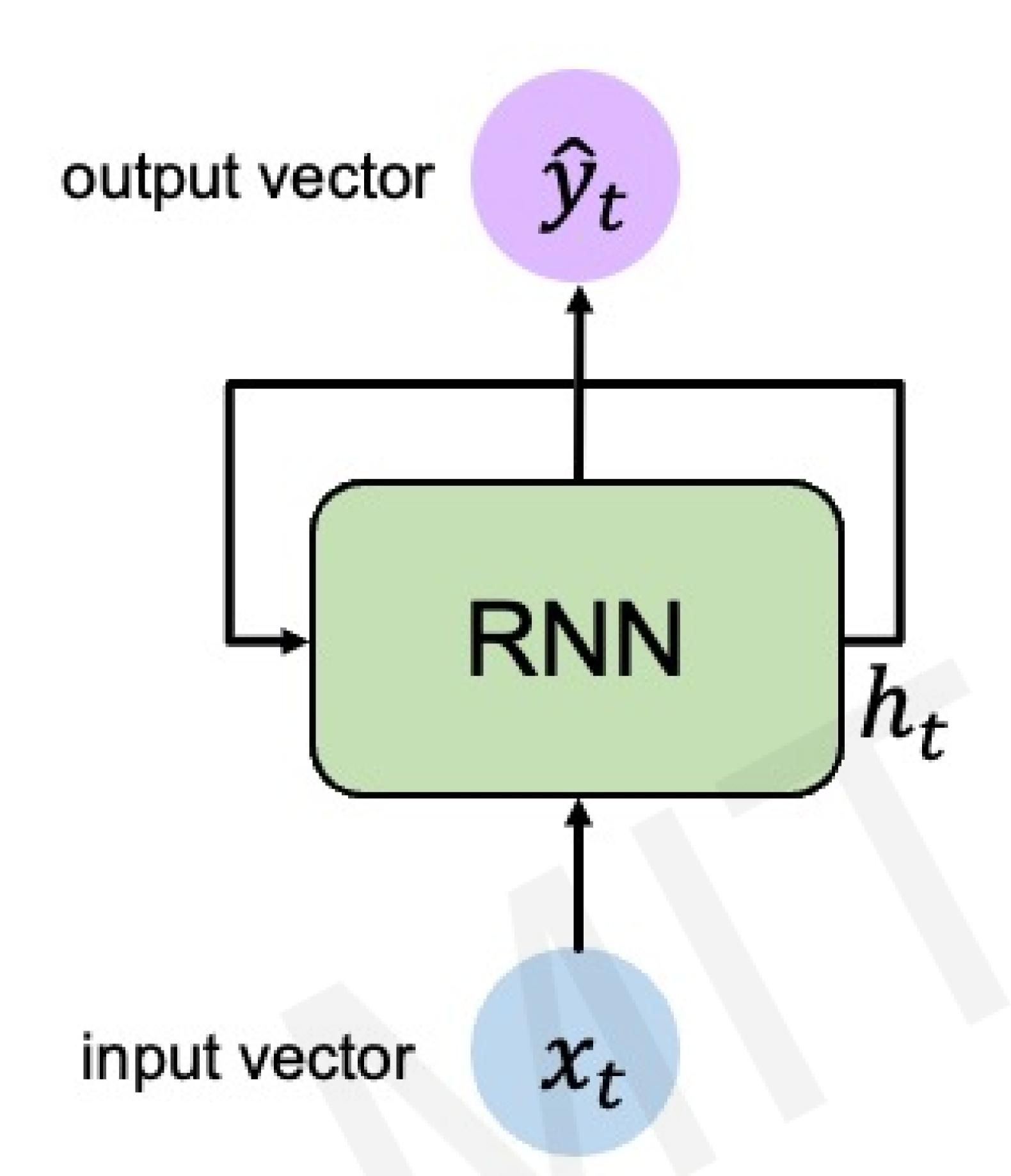
```
my rnn = RNN()
hidden state = [0, 0, 0, 0]
sentence = ["I", "love", "recurrent", "neural"]
for word in sentence:
    prediction, hidden state = my rnn (word, hidden state)
next_word_prediction = prediction
# >>> "networks!"
```







Input Vector x_t

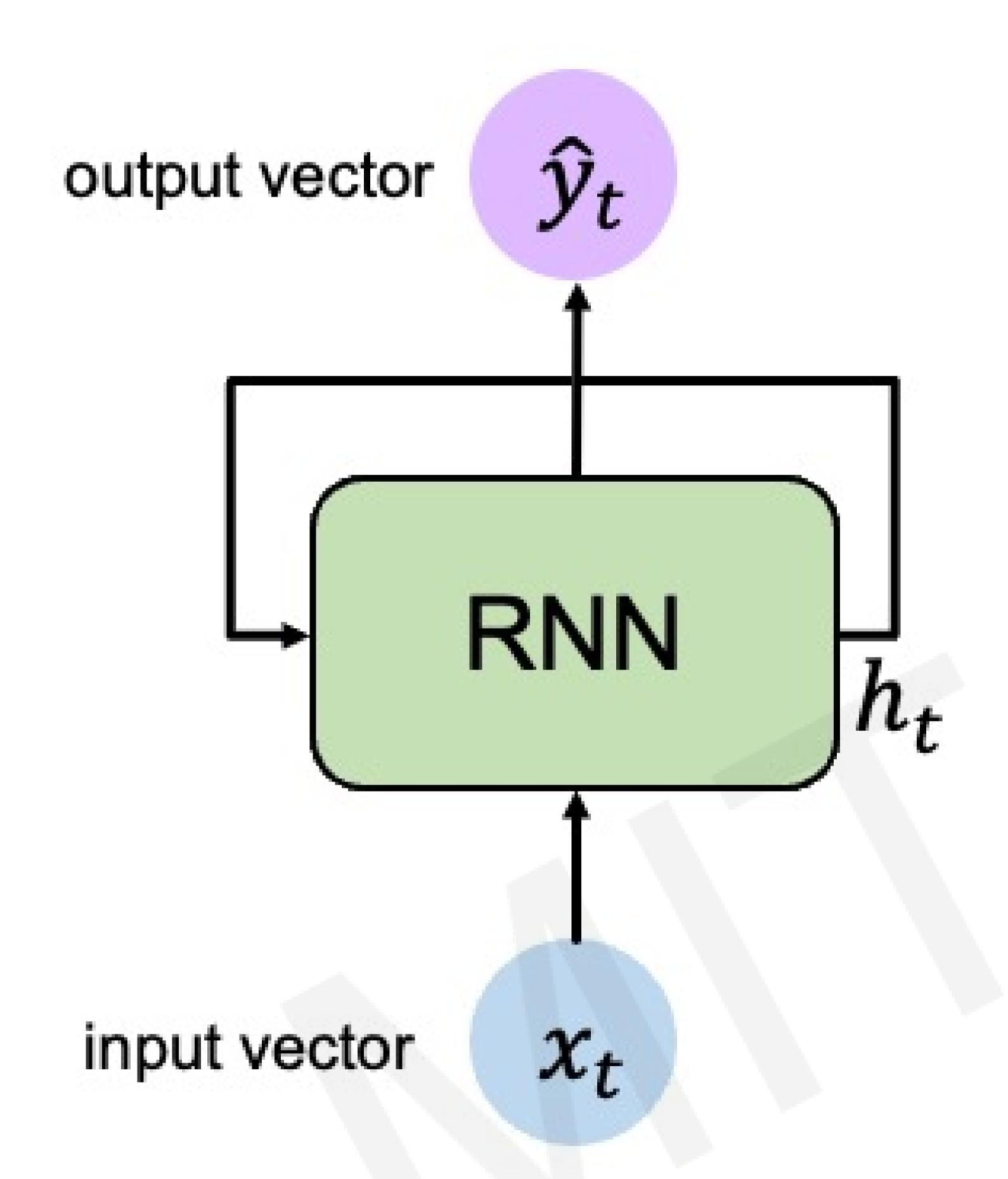


Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{hh}^T h_{t-1} + \boldsymbol{W}_{xh}^T x_t)$$

Input Vector

 x_t



Output Vector

$$\hat{y}_t = W_{hy}^T h_t$$

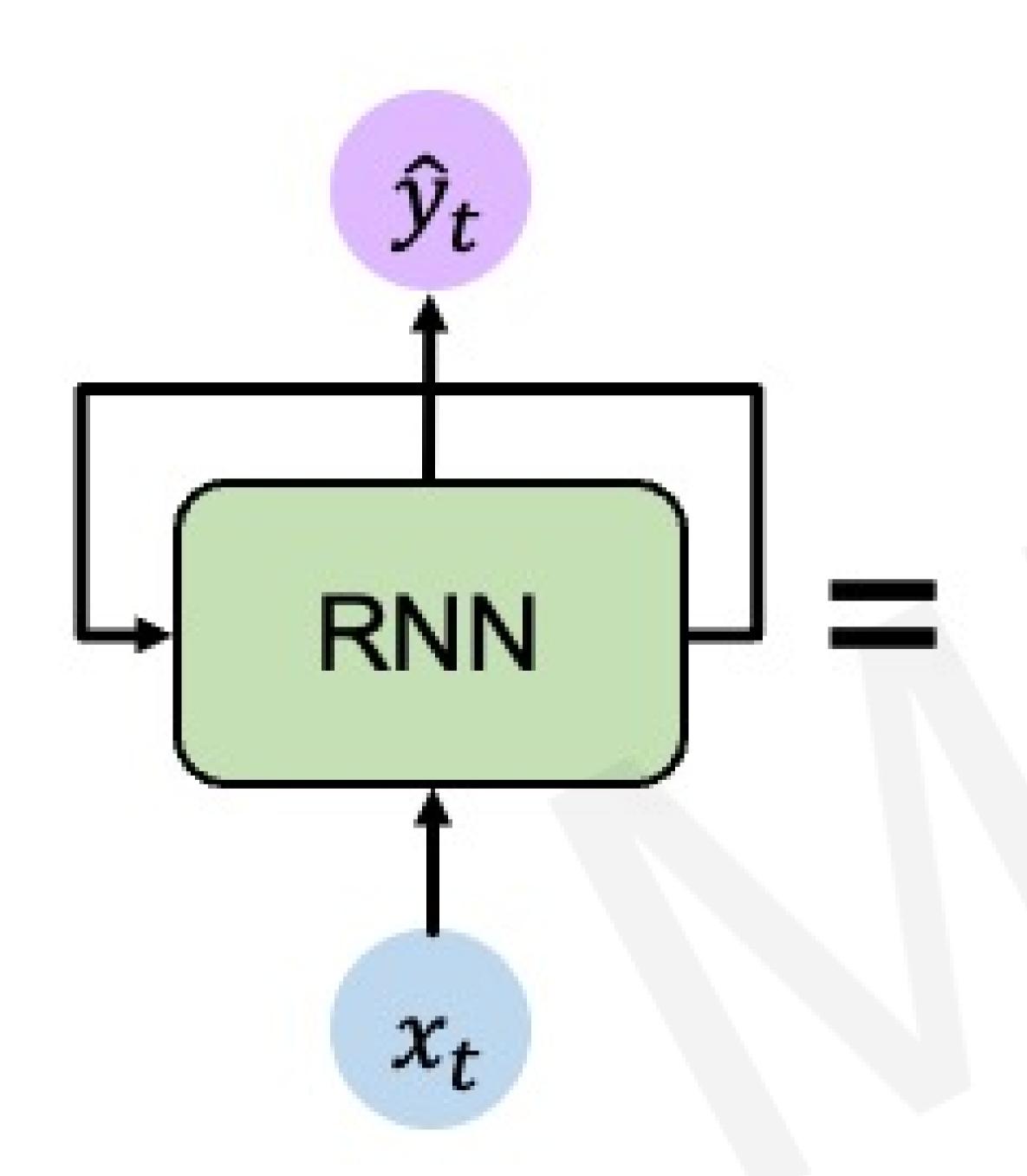
Update Hidden State

$$h_t = \tanh(\boldsymbol{W}_{hh}^T h_{t-1} + \boldsymbol{W}_{xh}^T x_t)$$

Input Vector

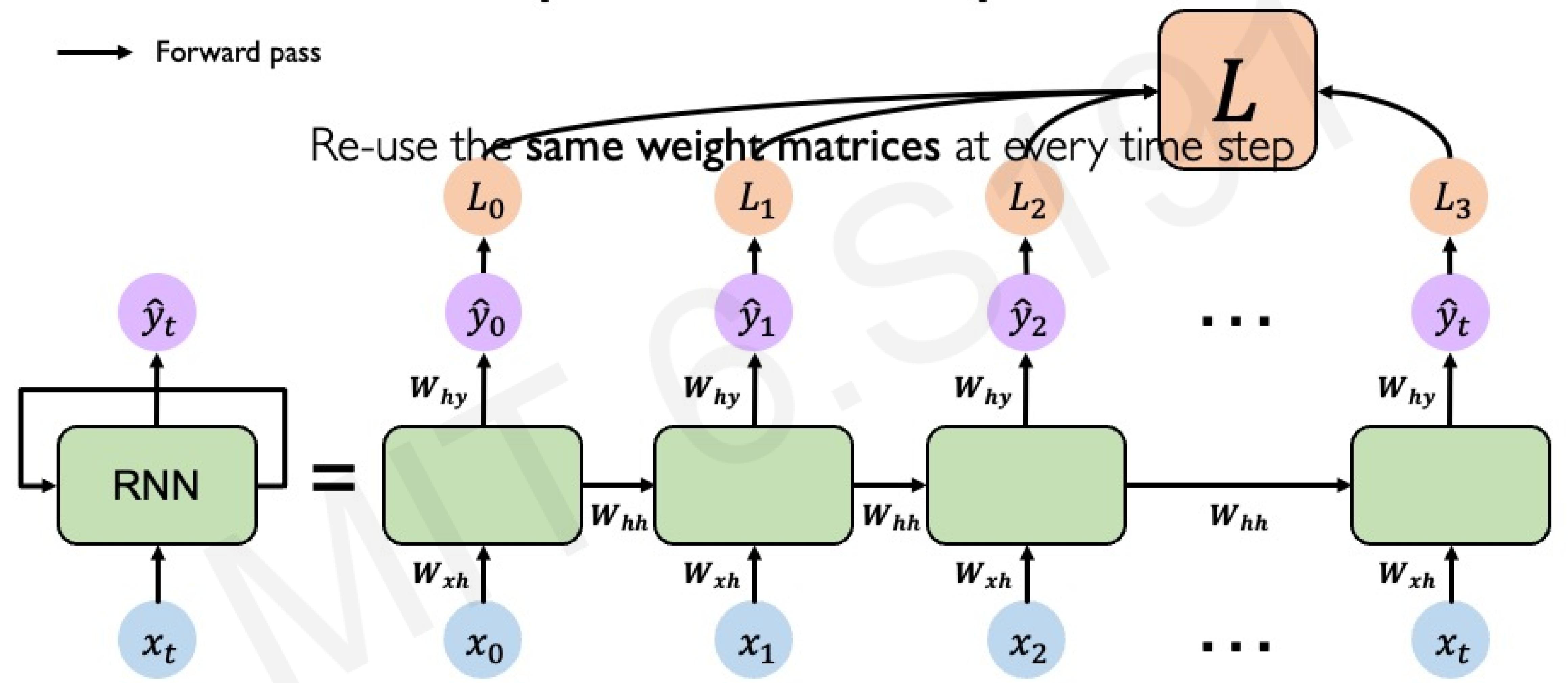
 x_t

RNNs: Computational Graph Across Time



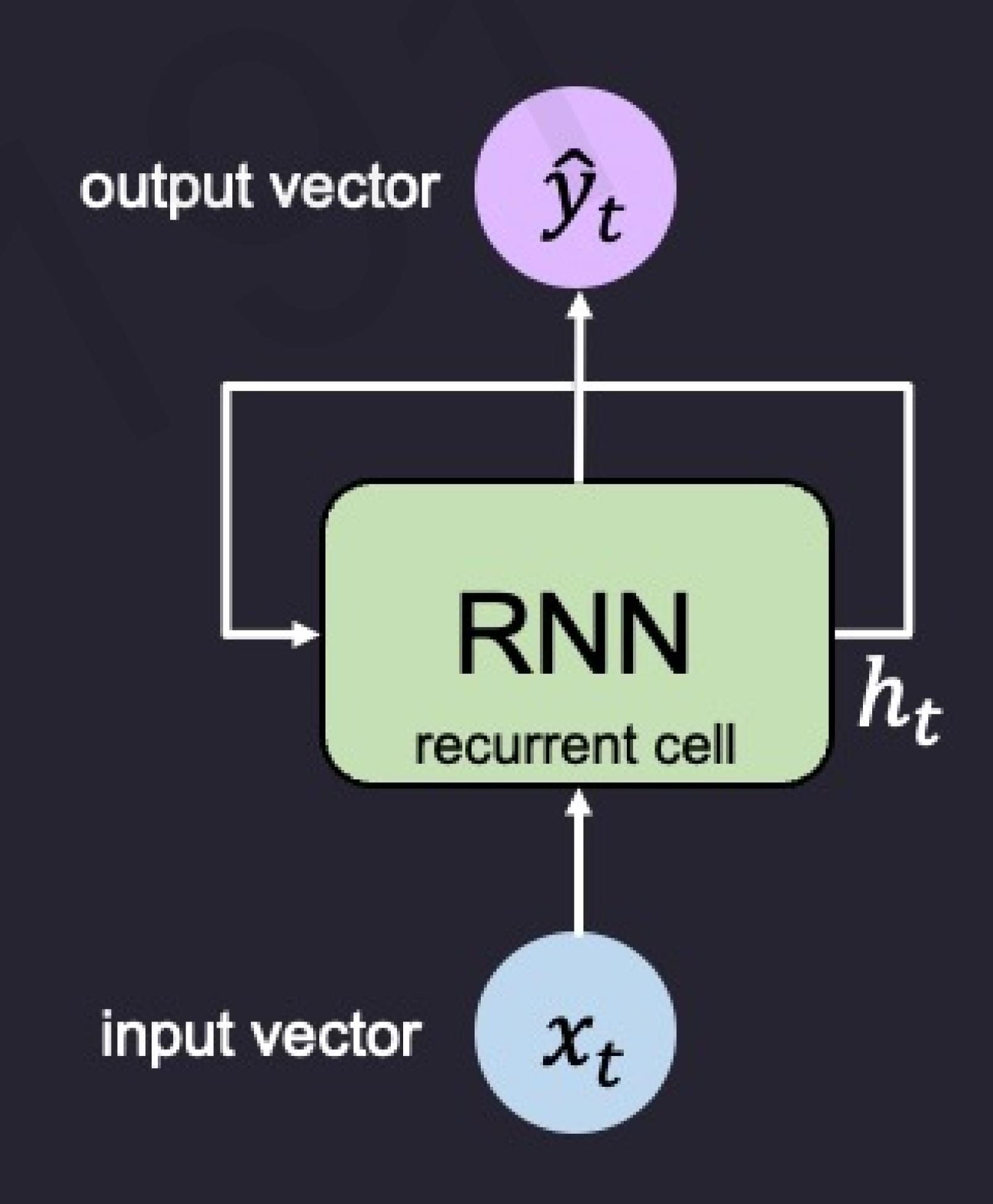
Represent as computational graph unrolled across time

RNNs: Computational Graph Across Time



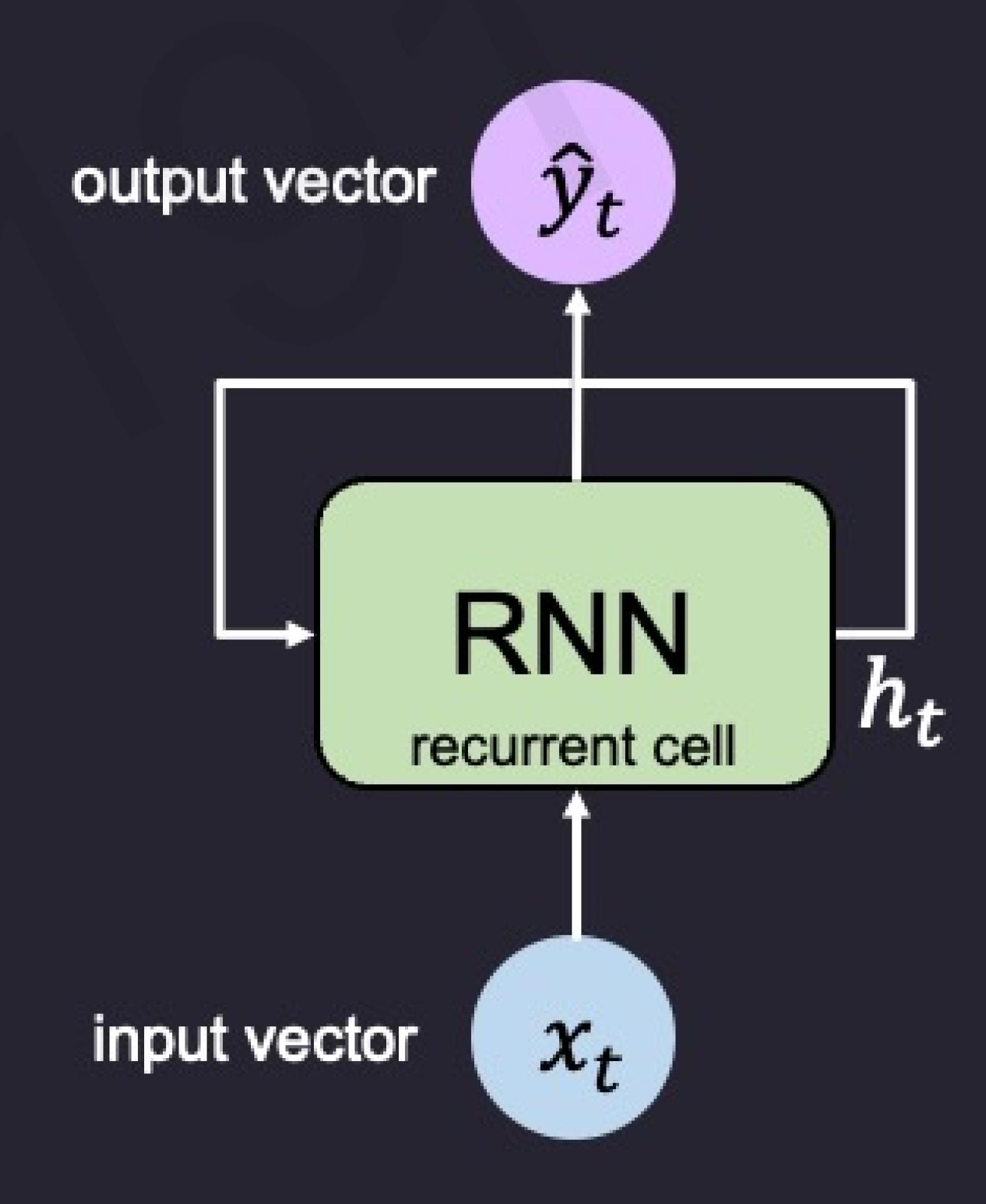
RNNs from Scratch


```
class MyRNNCell(tf.keras.layers.Layer):
  def init (self, rnn_units, input_dim, output_dim):
    super(MyRNNCell, self) __init__()
    # Initialize weight matrices
    self.W_xh = self.add_weight([rnn_units, input_dim])
    self W hh = self add weight([rnn_units, rnn_units])
    self.W hy = self.add weight([output_dim, rnn_units])
    # Initialize hidden state to zeros
             tf.zeros([rnn_units, 1])
    self.h -
  def call(self, x):
    # Update the hidden state
             tf.math.tanh( self.W hh * self.h + self.W xh * x )
    # Compute the output
    output = self.W hy * self.h
    # Return the current output and hidden state
    return output, self h
```

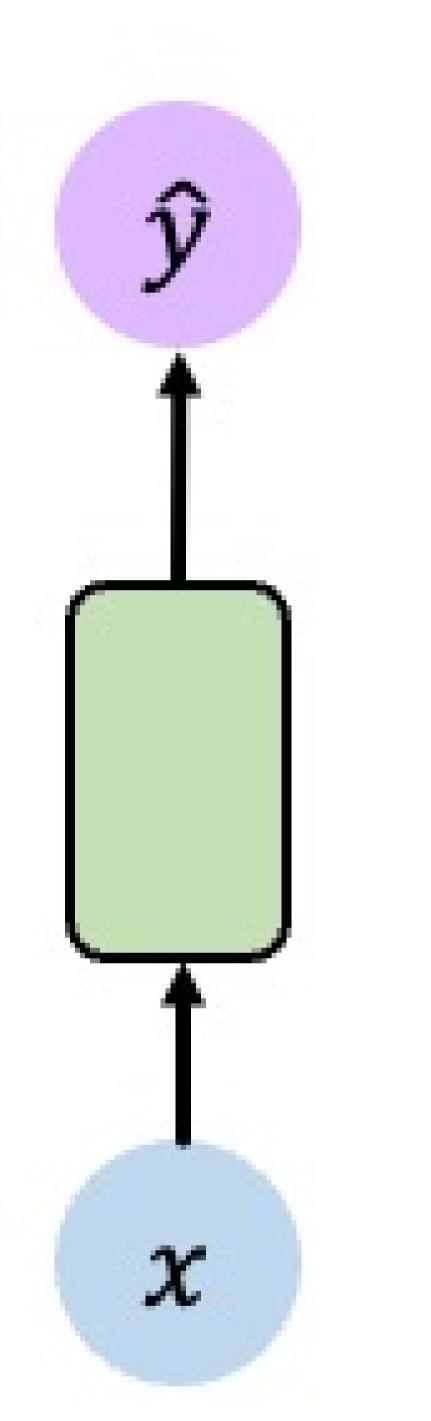


RNN Implementation in TensorFlow

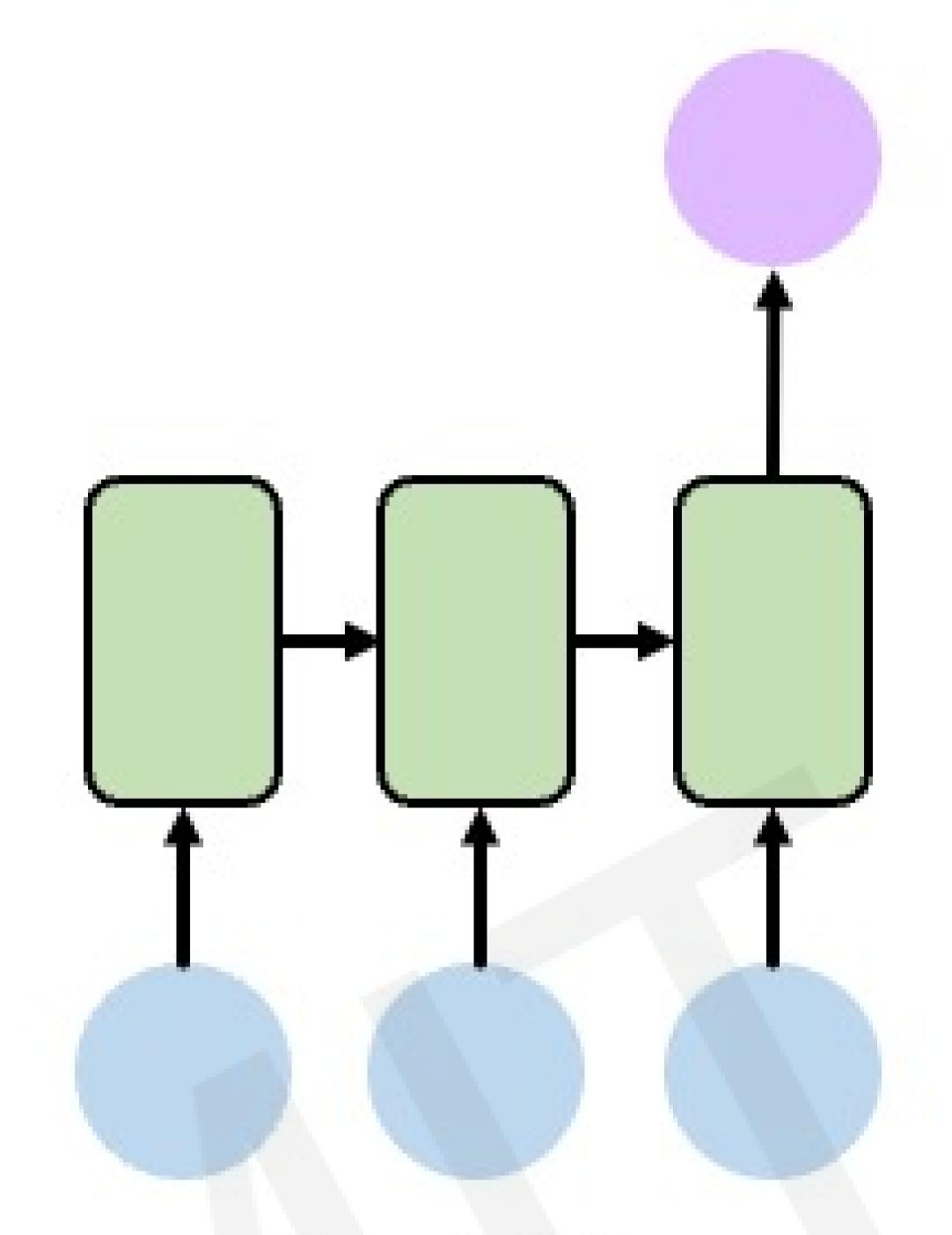
tf.keras.layers.SimpleRNN(rnn_units)



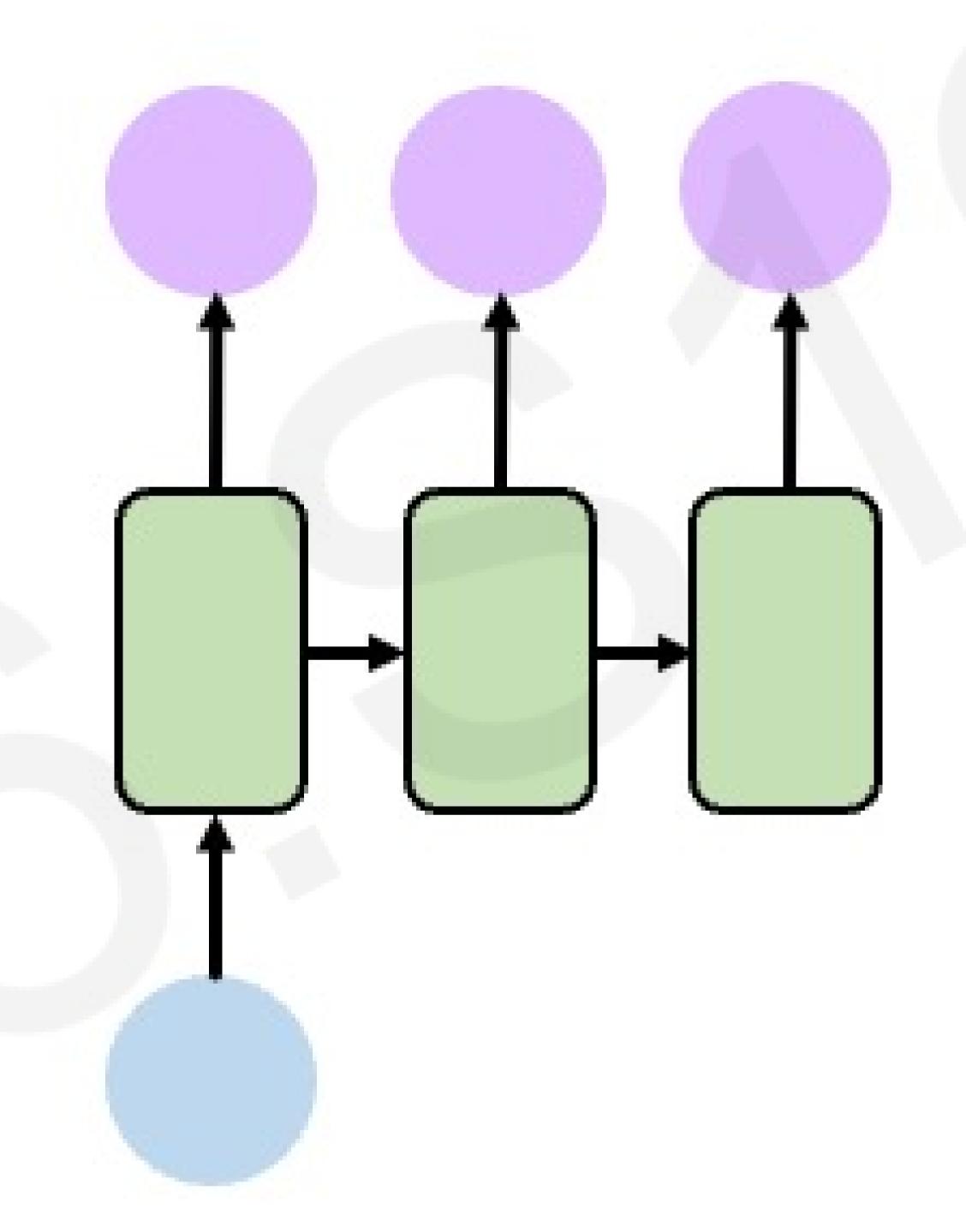
RNNs for Sequence Modeling



One to One "Vanilla" NN Binary classification



Many to One Sentiment Classification



One to Many Text Generation Image Captioning

Many to Many Translation & Forecasting Music Generation

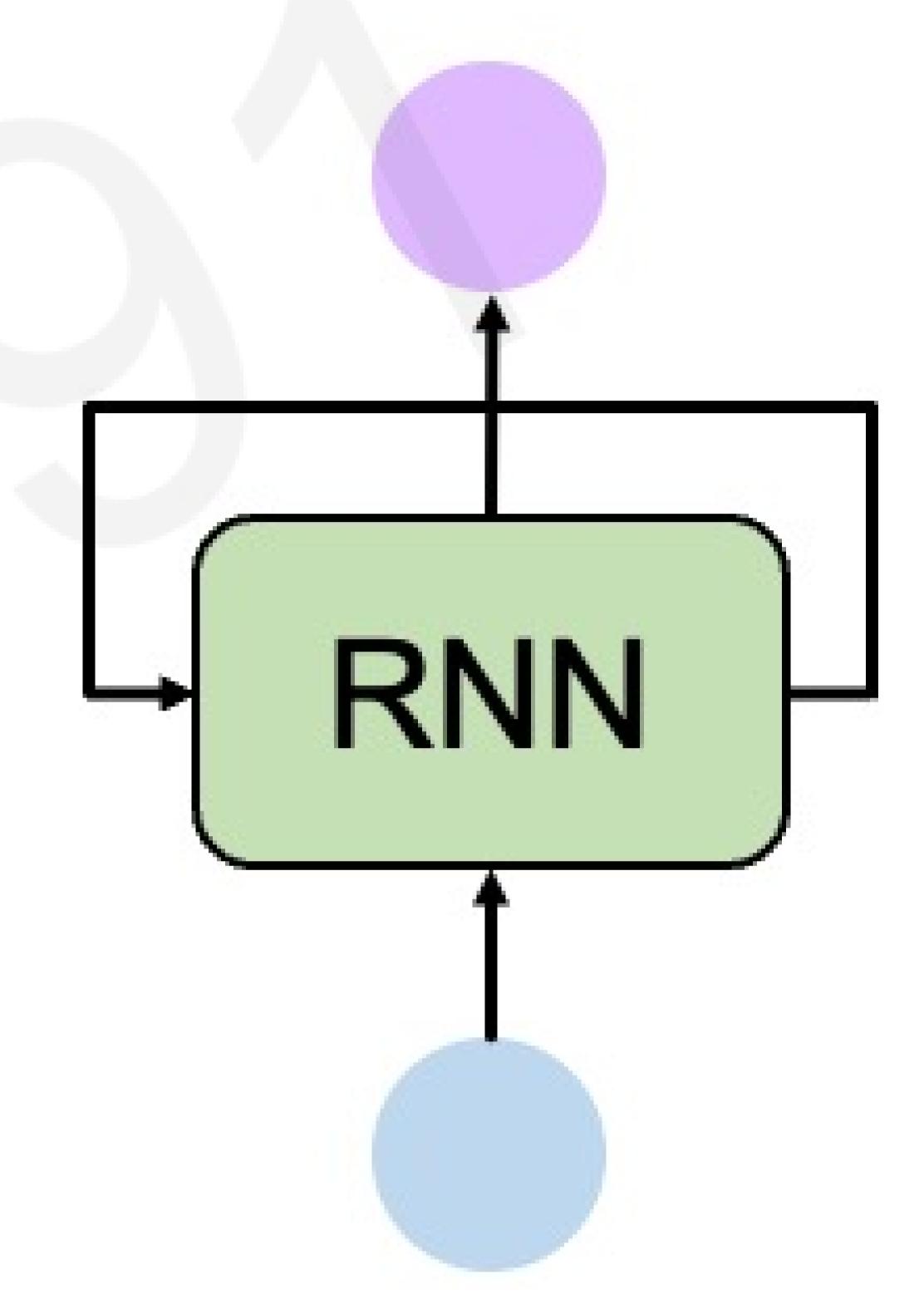
6.S191 Lab!

... and many other architectures and applications

Sequence Modeling: Design Criteria

To model sequences, we need to:

- 1. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence



Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

"This morning I took my cat for a walk."

"This morning I took my cat for a walk."
given these words

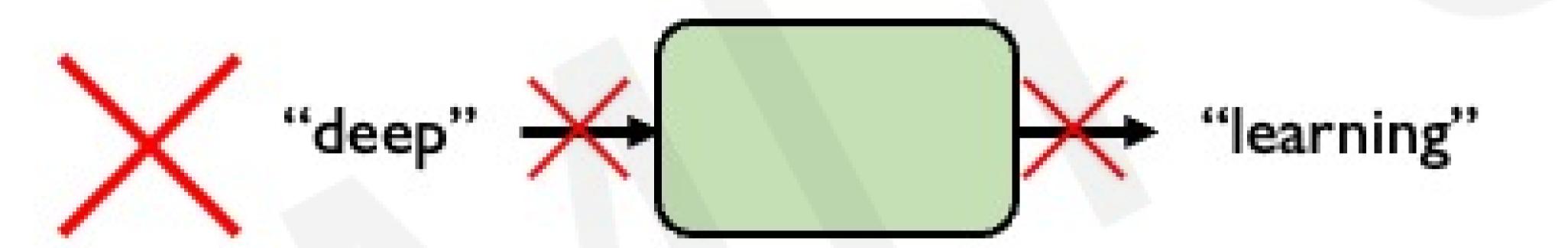
"This morning I took my cat for a walk."

given these words

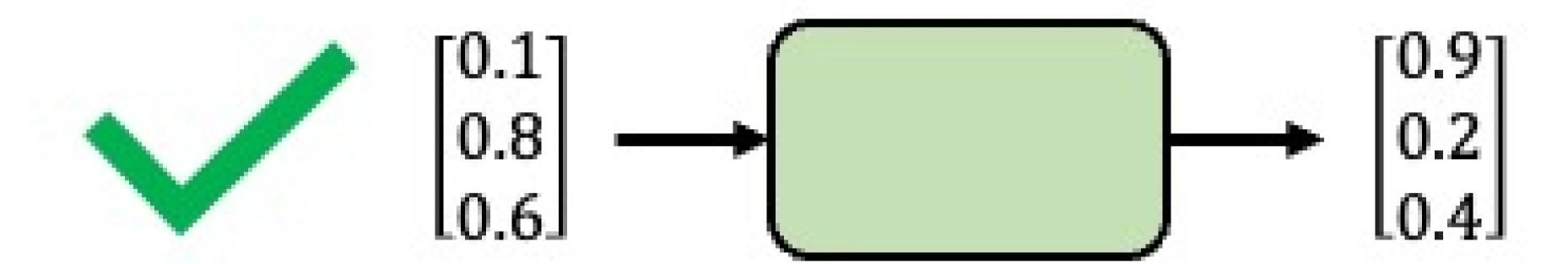
predict the next word

"This morning I took my cat for a walk." given these words predict the next word

Representing Language to a Neural Network

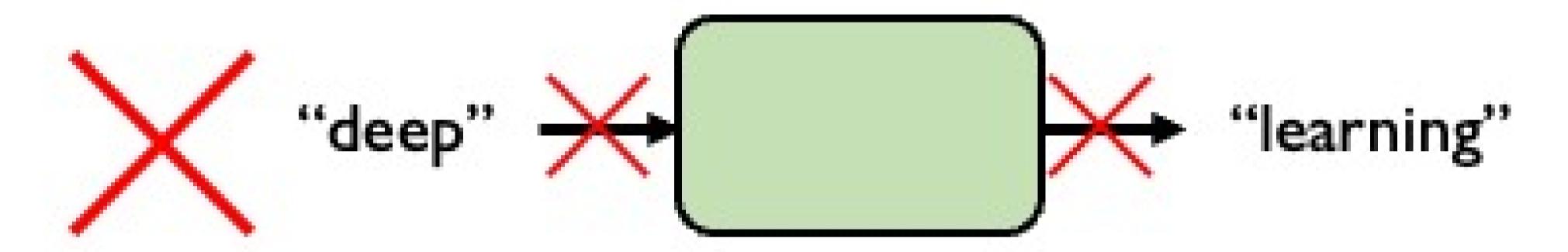


Neural networks cannot interpret words

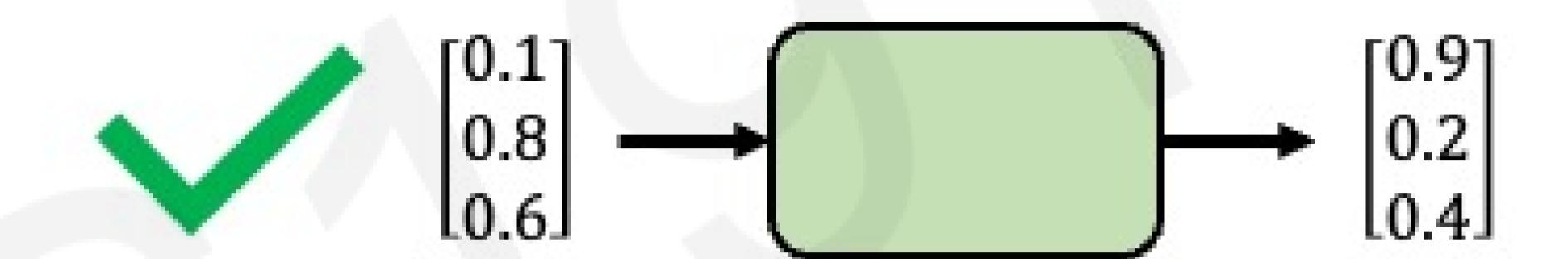


Neural networks require numerical inputs

Encoding Language for a Neural Network

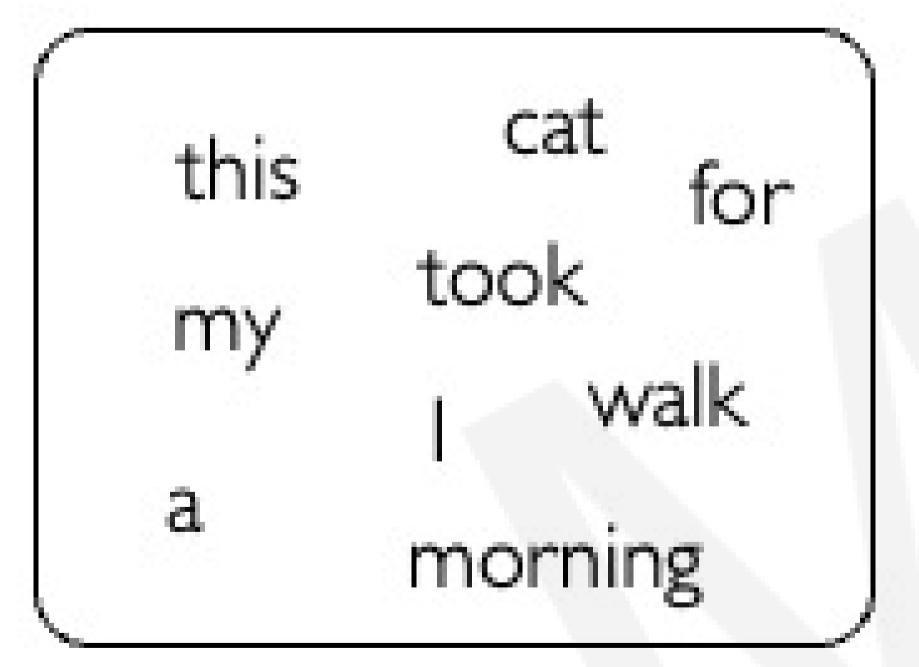


Neural networks cannot interpret words

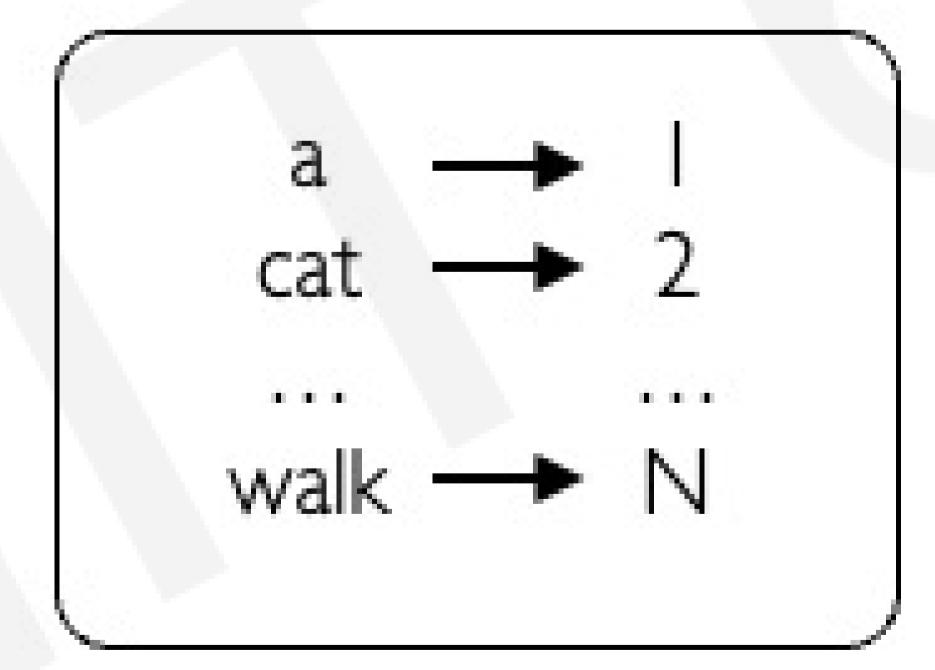


Neural networks require numerical inputs

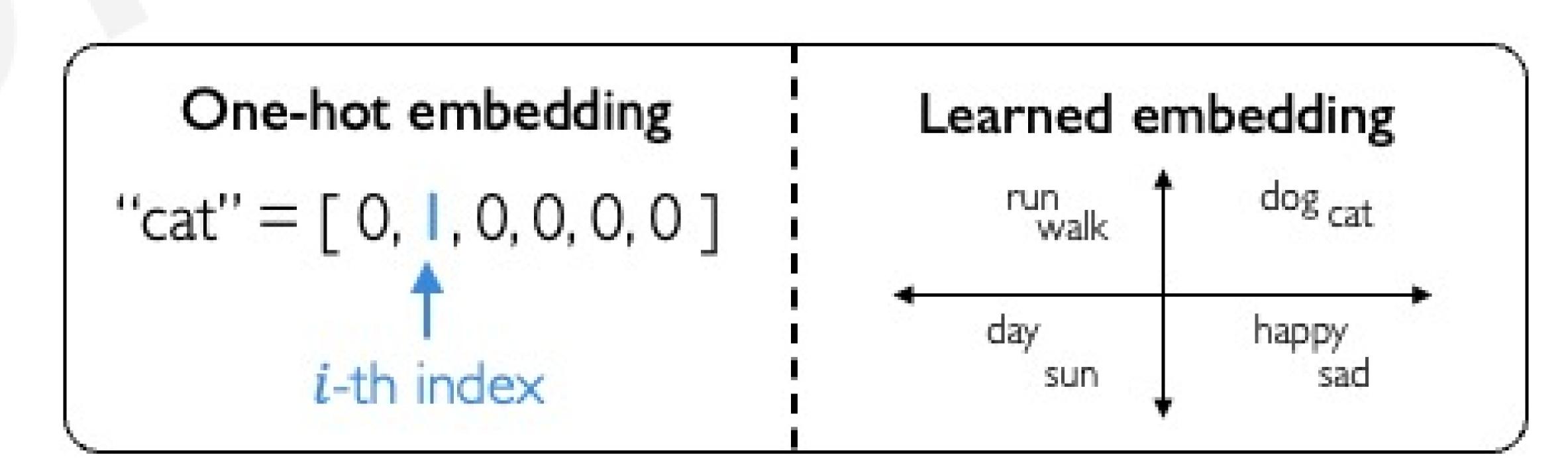
Embedding: transform indexes into a vector of fixed size.



I. Vocabulary: Corpus of words



2. Indexing: Word to index



3. Embedding: Index to fixed-sized vector

Handle Variable Sequence Lengths

The food was great

VS.

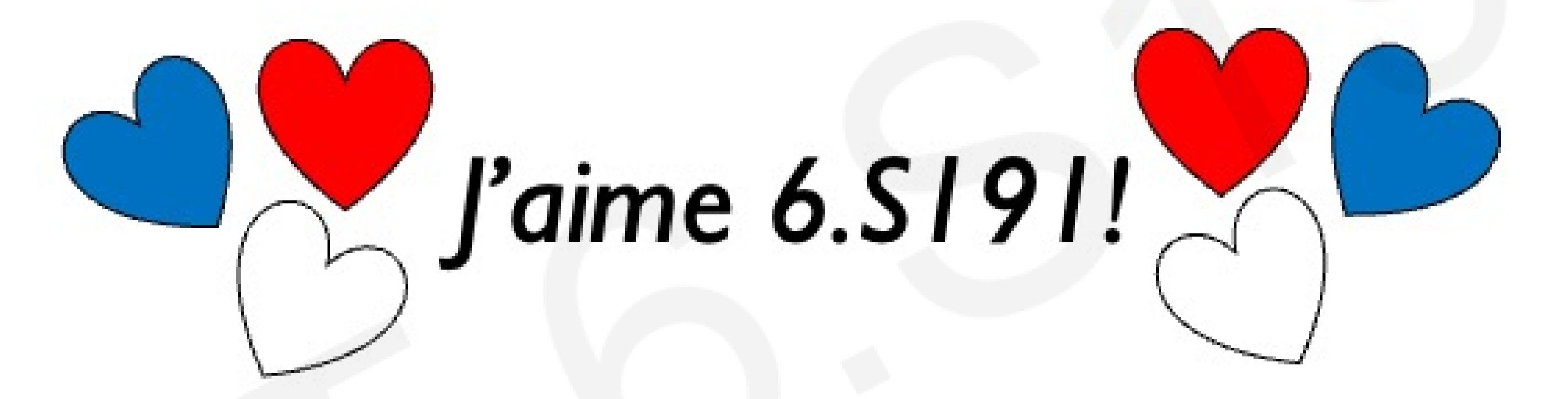
We visited a restaurant for lunch

VS.

We were hungry but cleaned the house before eating

Model Long-Term Dependencies

"France is where I grew up, but I now live in Boston. I speak fluent ___."



We need information from **the distant past** to accurately predict the correct word.

Capture Differences in Sequence Order

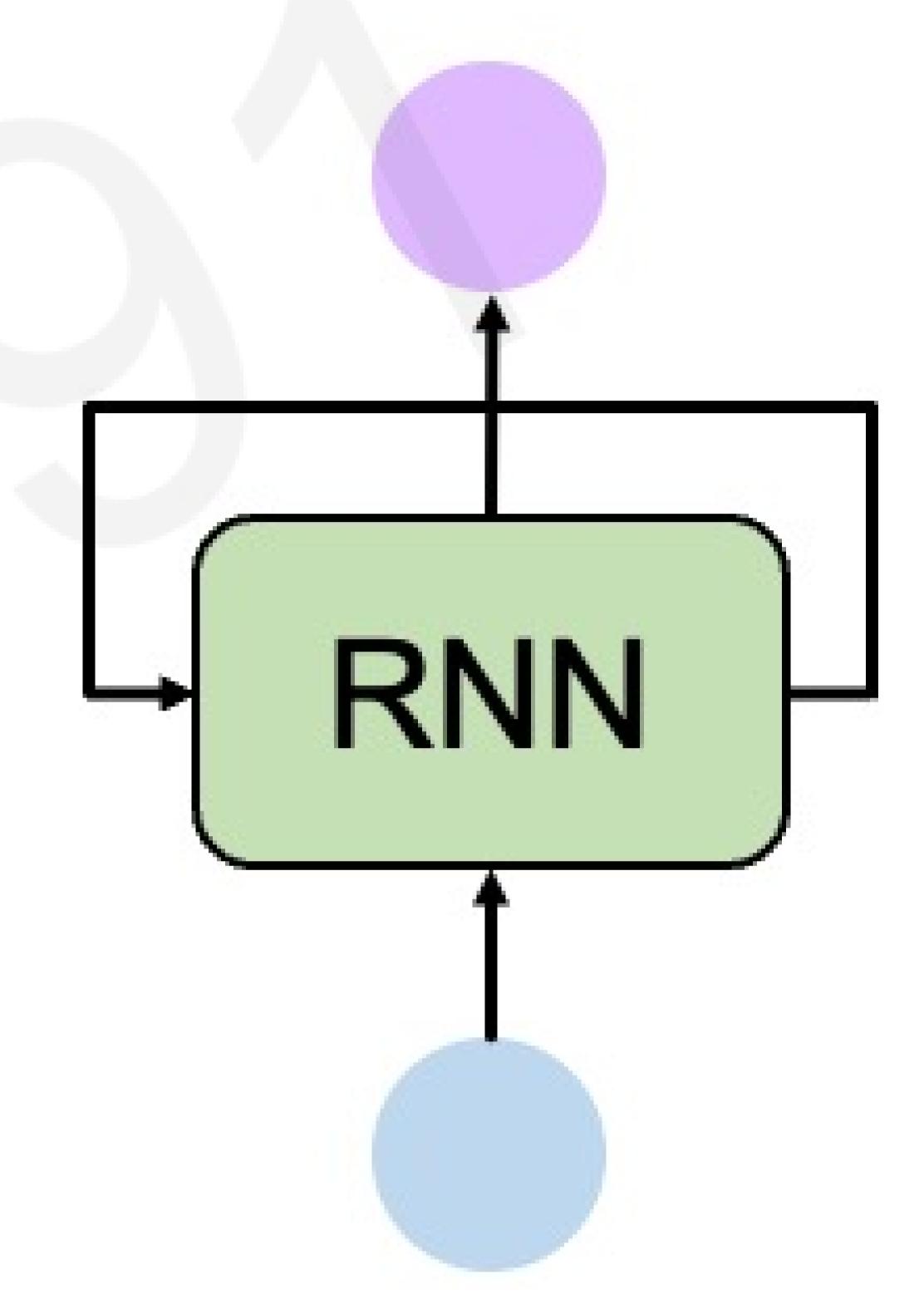
The food was good, not bad at all.

The food was bad, not good at all.

Sequence Modeling: Design Criteria

To model sequences, we need to:

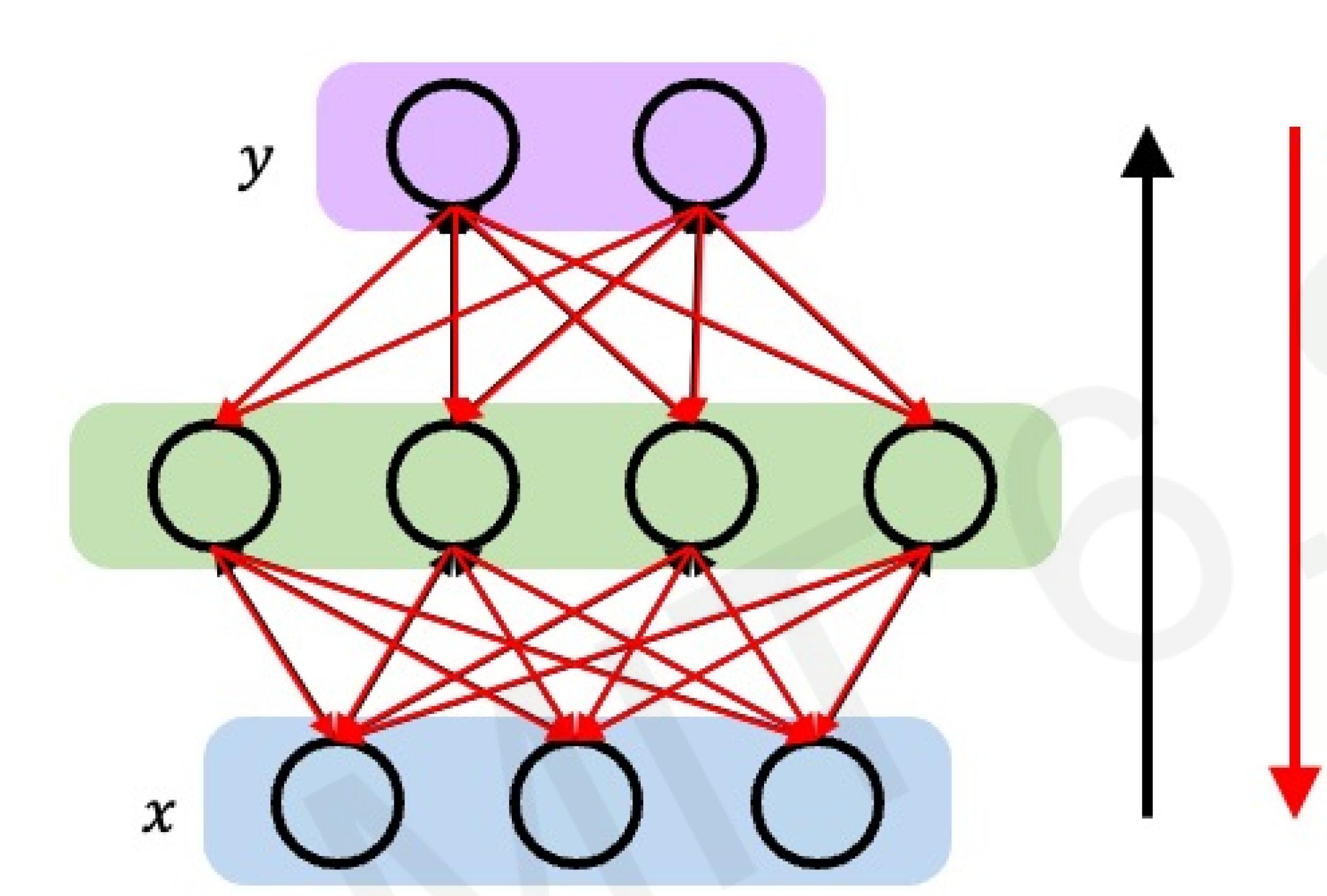
- 1. Handle variable-length sequences
- 2. Track long-term dependencies
- 3. Maintain information about order
- 4. Share parameters across the sequence



Recurrent Neural Networks (RNNs) meet these sequence modeling design criteria

Backpropagation Through Time (BPTT)

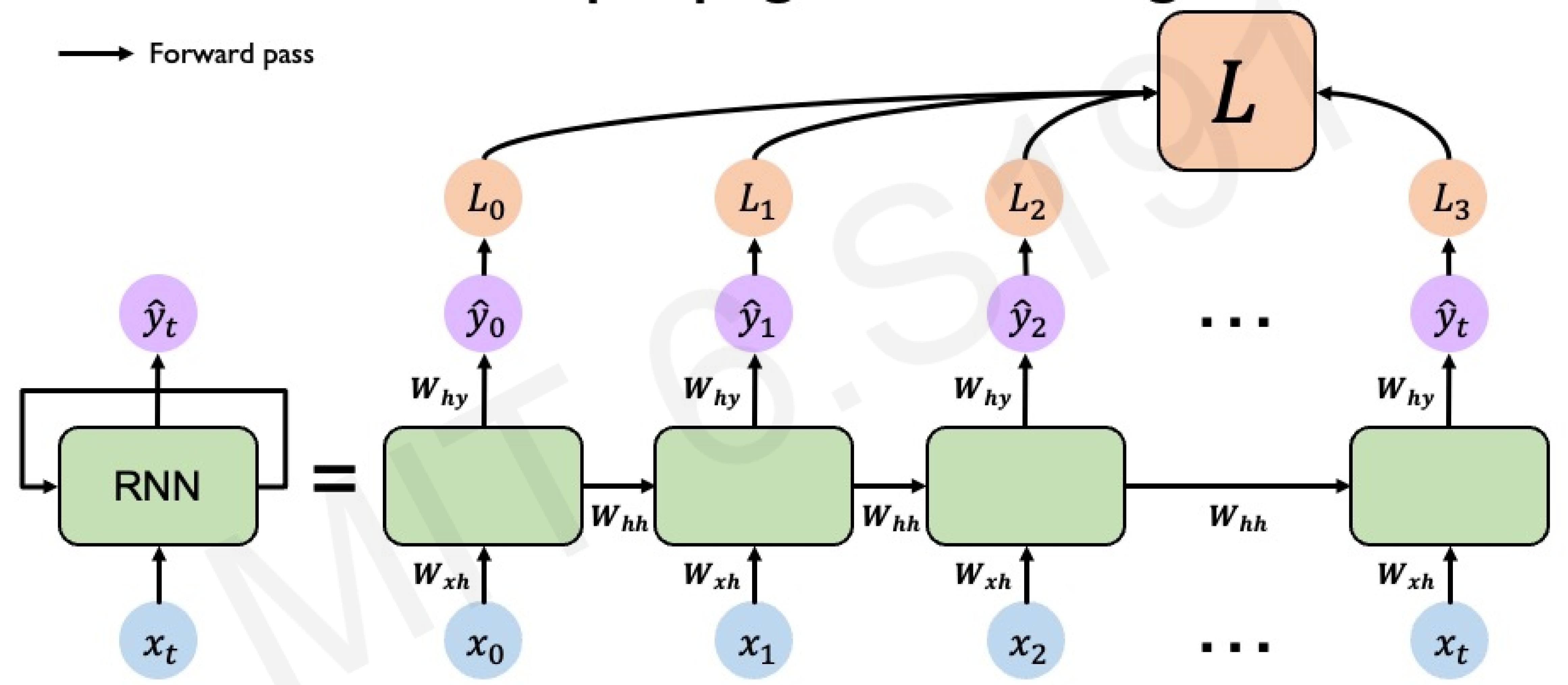
Recall: Backpropagation in Feed Forward Models



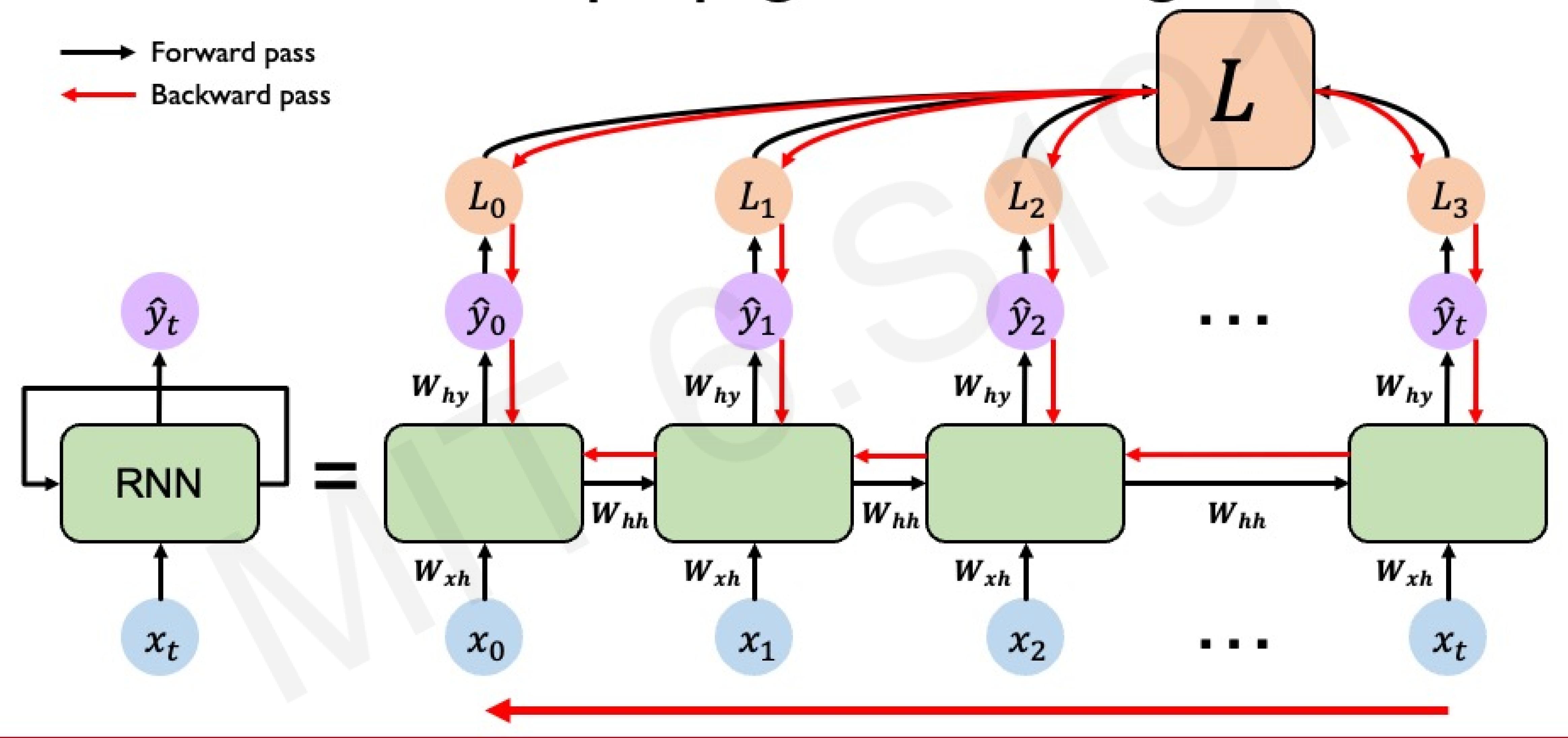
Backpropagation algorithm:

- I. Take the derivative (gradient) of the loss with respect to each parameter
- Shift parameters in order to minimize loss

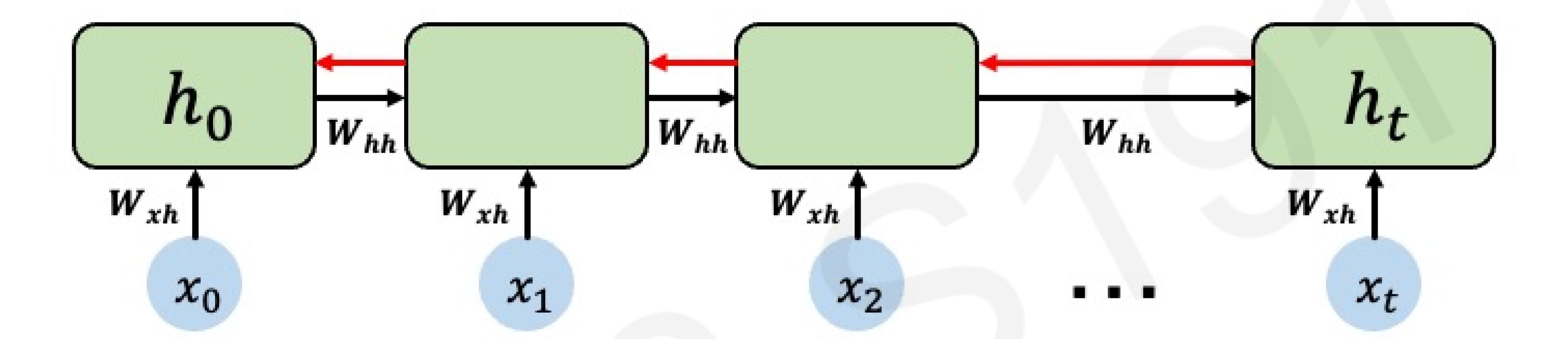
RNNs: Backpropagation Through Time



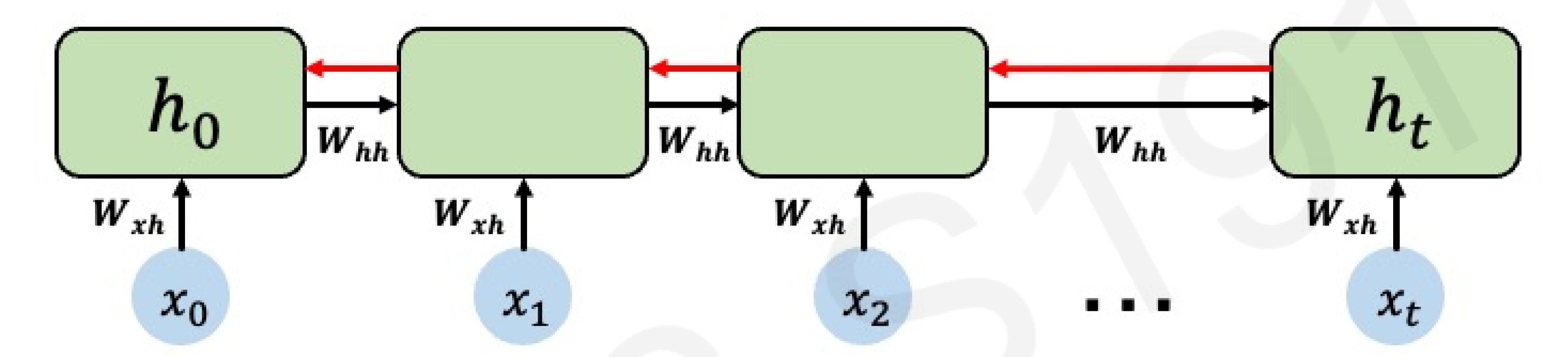
RNNs: Backpropagation Through Time



Standard RNN Gradient Flow

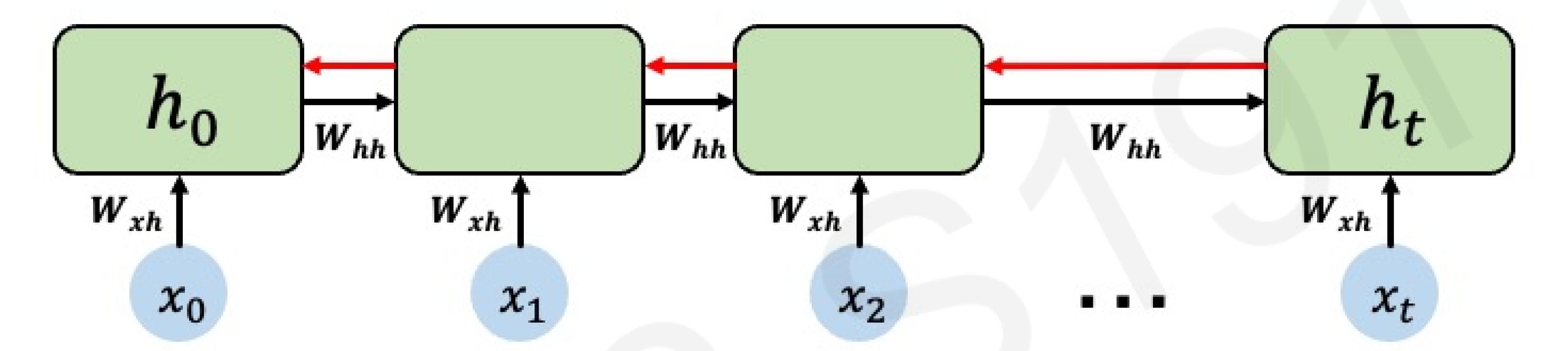


Standard RNN Gradient Flow



Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Standard RNN Gradient Flow: Exploding Gradients



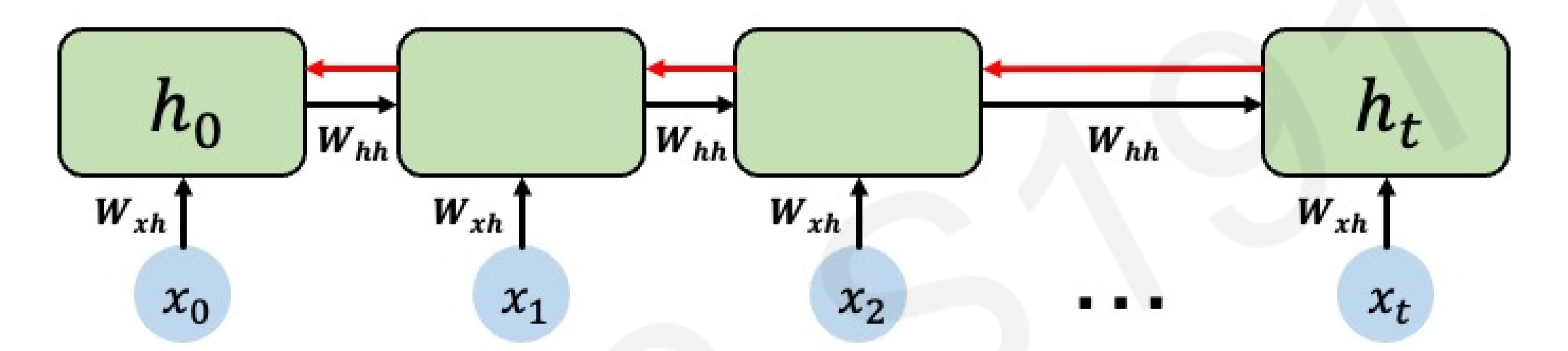
Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:

exploding gradients

Gradient clipping to scale big gradients

Standard RNN Gradient Flow: Vanishing Gradients



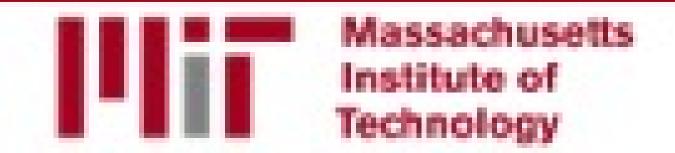
Computing the gradient wrt h_0 involves many factors of W_{hh} + repeated gradient computation!

Many values > 1:
exploding gradients

Gradient clipping to
scale big gradients

Many values < 1: vanishing gradients

- 1. Activation function
- 2. Weight initialization
- 3. Network architecture



Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

"The clouds are in the ____"

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

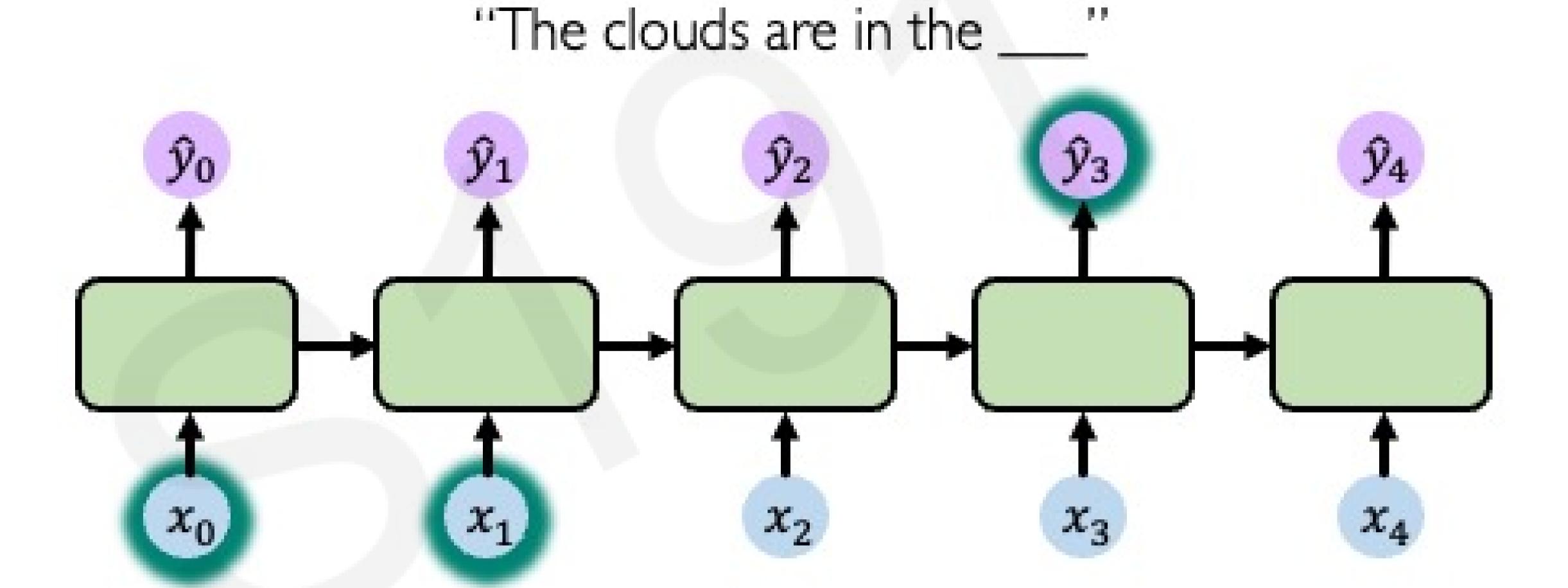
Bias parameters to capture short-term dependencies

Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies



Why are vanishing gradients a problem?

Multiply many small numbers together

Errors due to further back time steps have smaller and smaller gradients

Bias parameters to capture short-term dependencies

 x_0

"The clouds are in the

"I grew up in France, ... and I speak fluent___"

Why are vanishing gradients a problem?

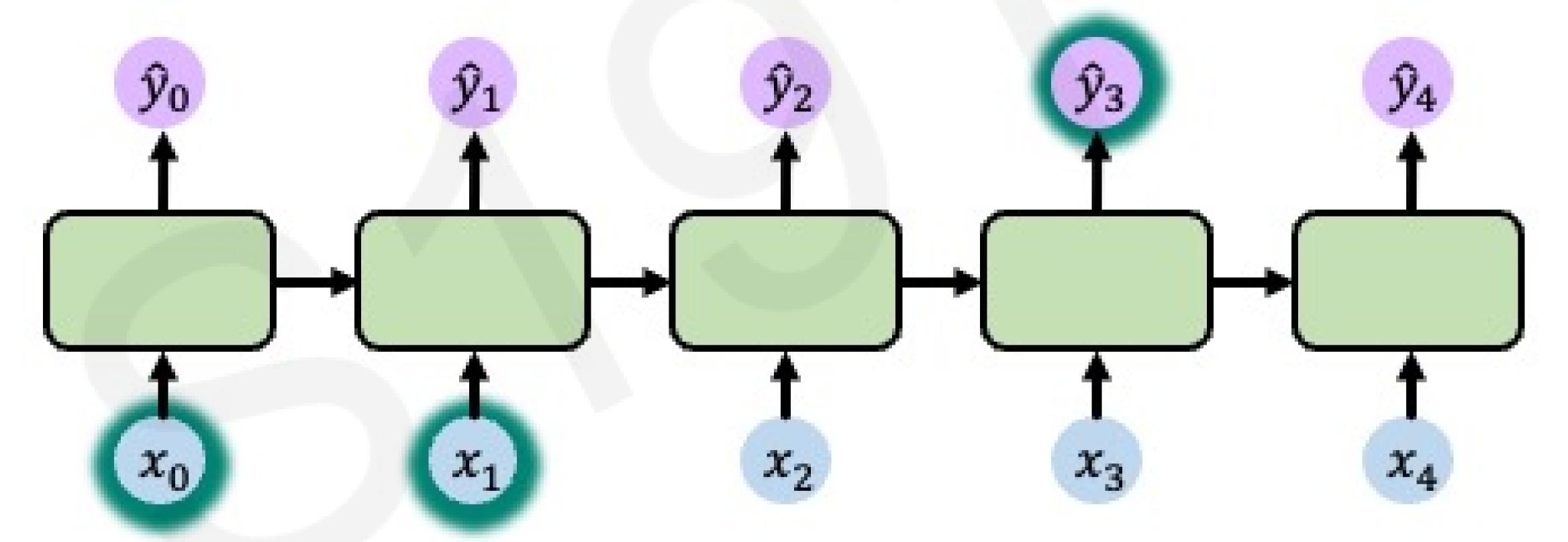
Multiply many small numbers together

Errors due to further back time steps

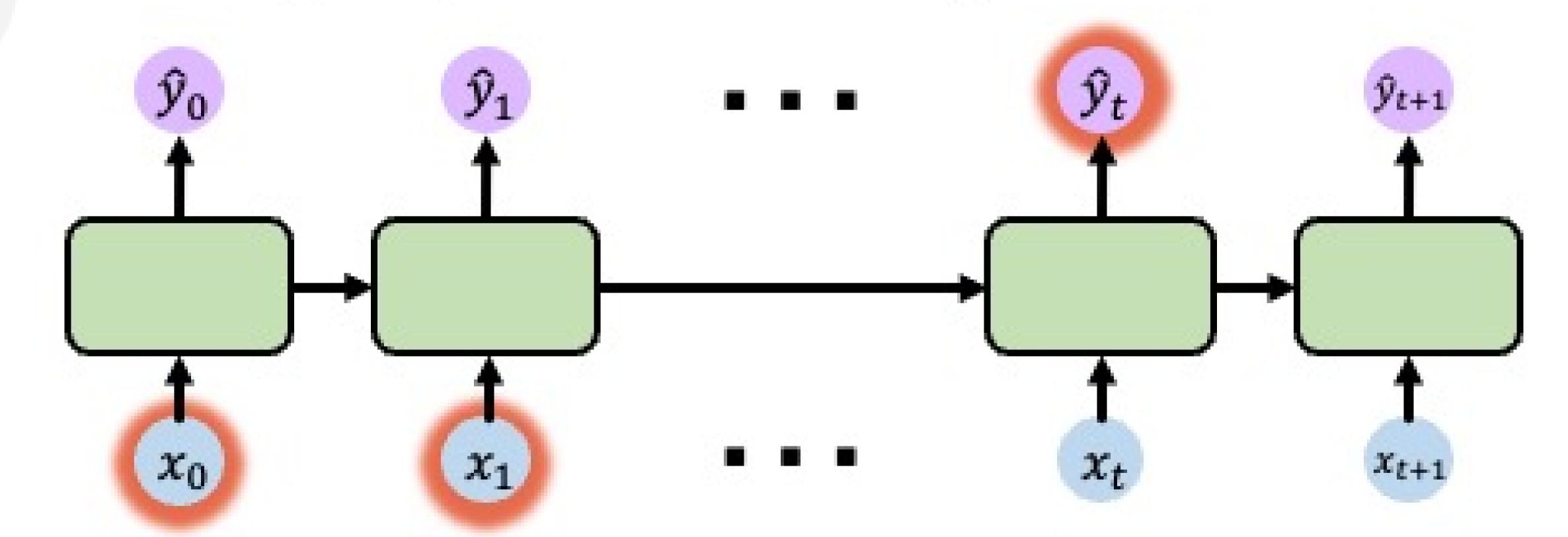
have smaller and smaller gradients

Bias parameters to capture short-term dependencies

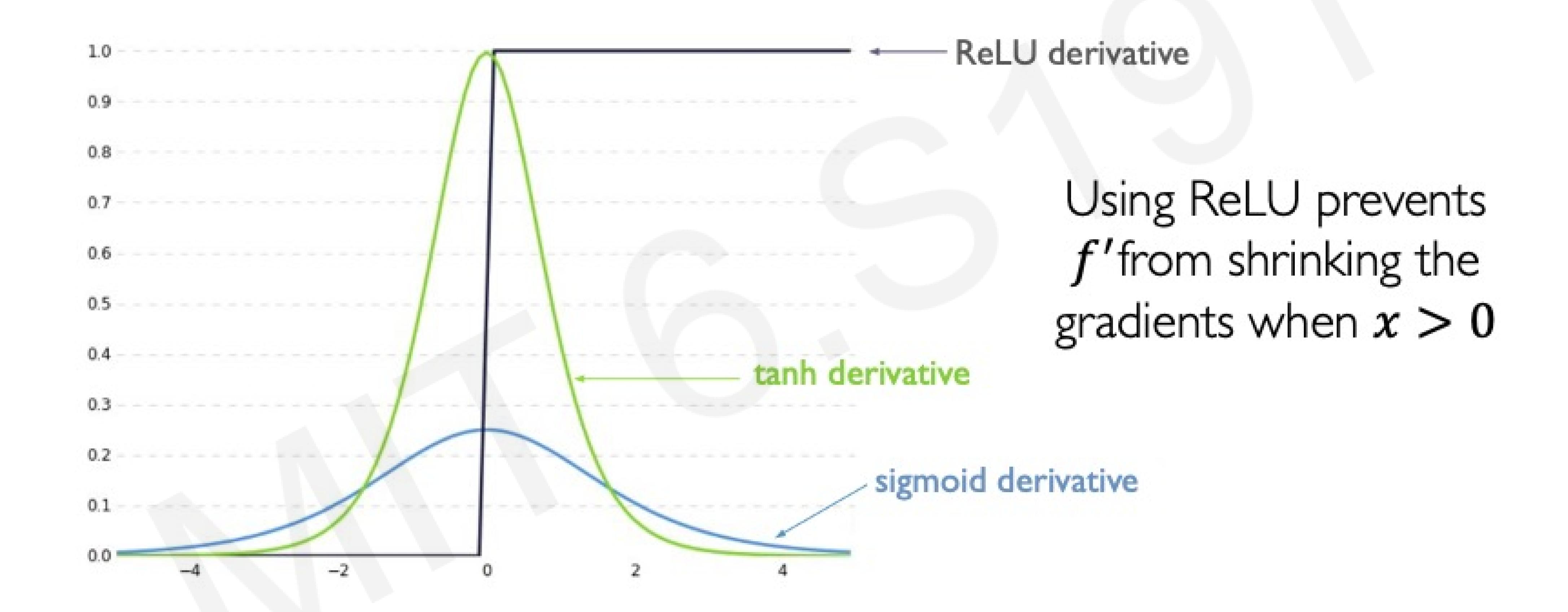
"The clouds are in the



"I grew up in France, ... and I speak fluent____"



Trick #1: Activation Functions



Trick #2: Parameter Initialization

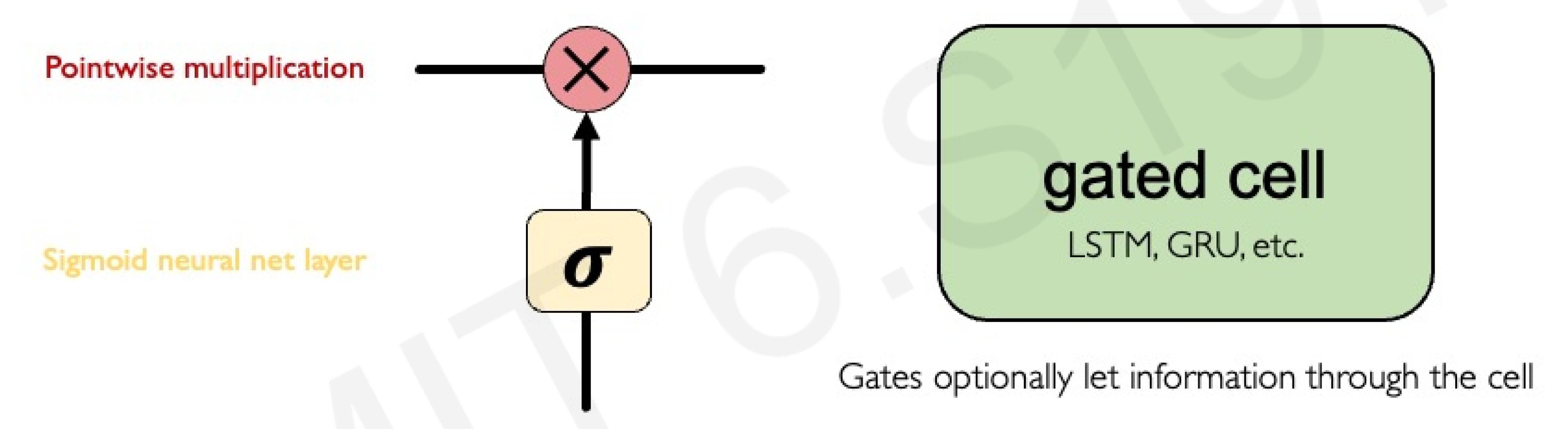
Initialize biases to zero

Initialize **weights** to identity matrix
$$I_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

This helps prevent the weights from shrinking to zero.

Trick #3: Gated Cells

Idea: use gates to selectively add or remove information within each recurrent unit with

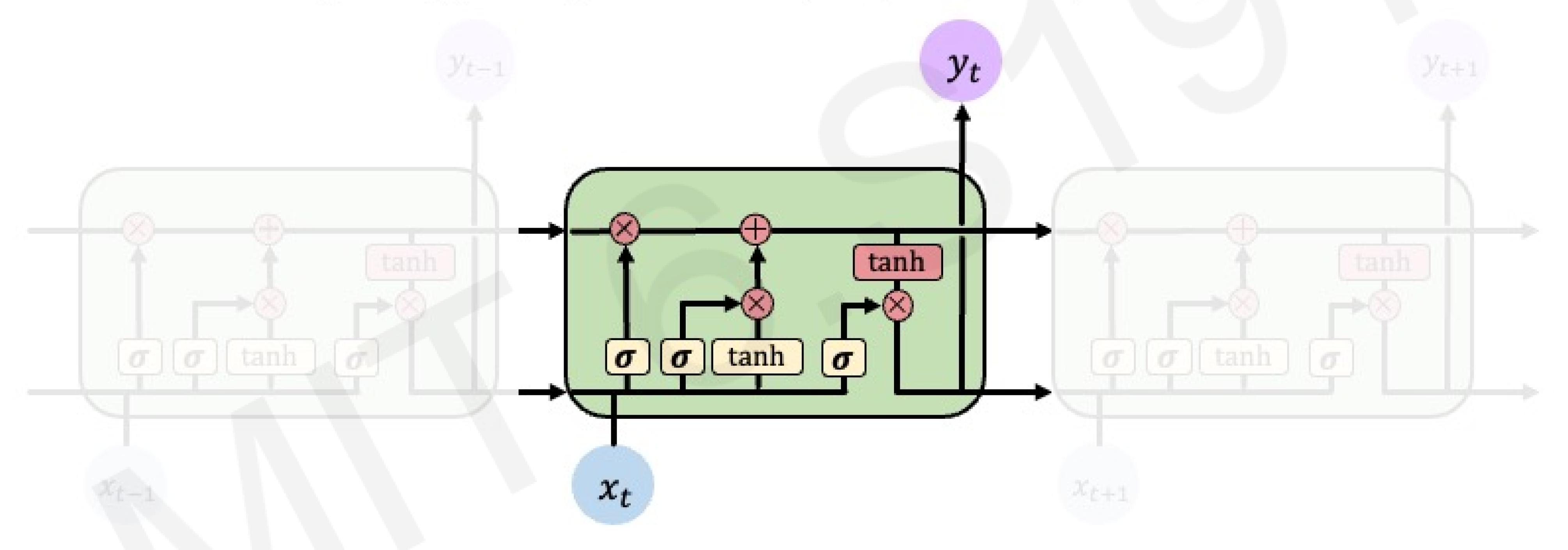


Long Short Term Memory (LSTMs) networks rely on a gated cell to track information throughout many time steps.

Long Short Term Memory (LSTMs)

Gated LSTM cells control information flow:

1) Forget 2) Store 3) Update 4) Output



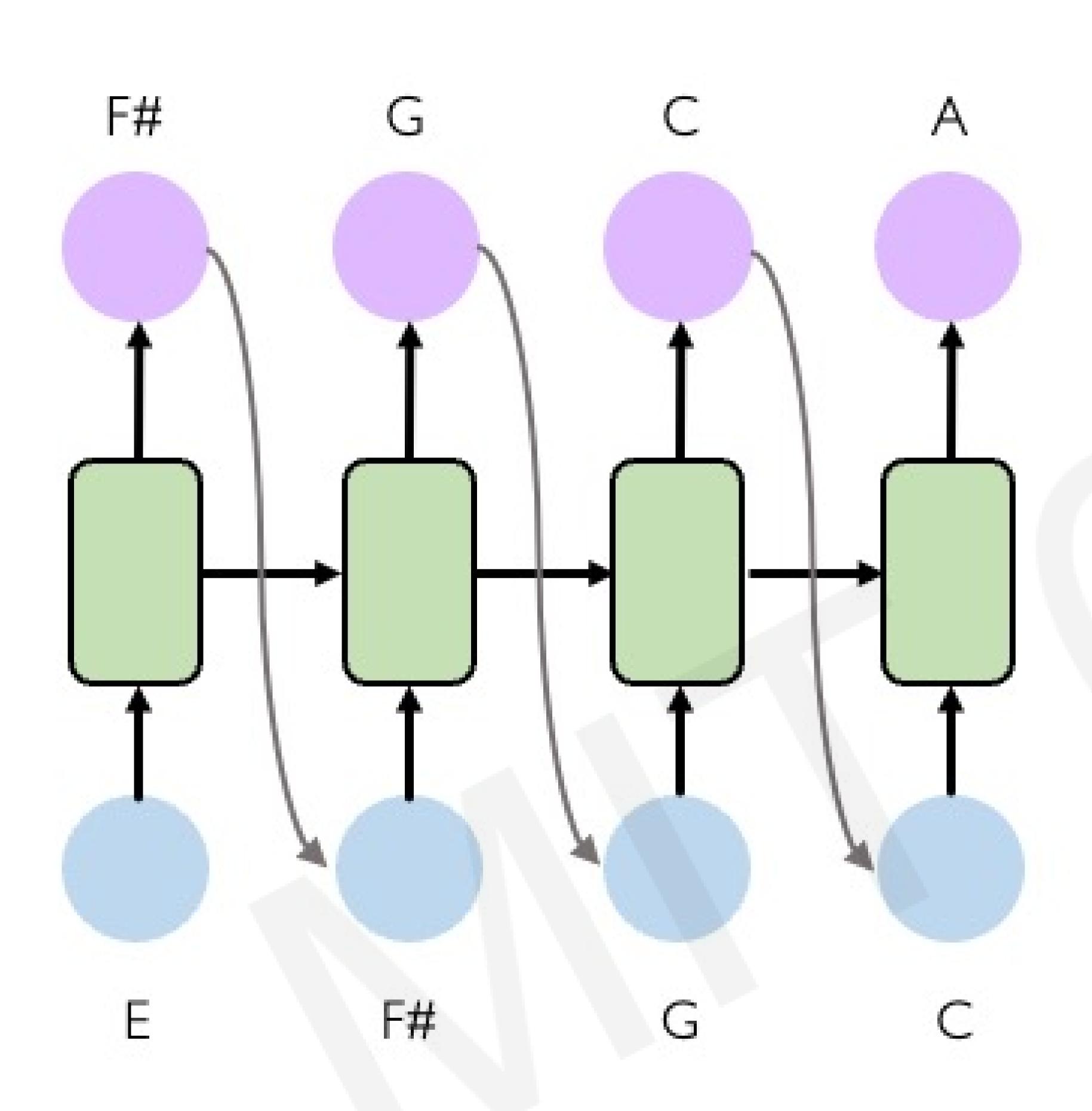
LSTM cells are able to track information throughout many timesteps

LSTMs: Key Concepts

- 1. Maintain a cell state
- 2. Use gates to control the flow of information
 - Forget gate gets rid of irrelevant information
 - Store relevant information from current input
 - Selectively update cell state
 - Output gate returns a filtered version of the cell state
- 3. Backpropagation through time with partially uninterrupted gradient flow

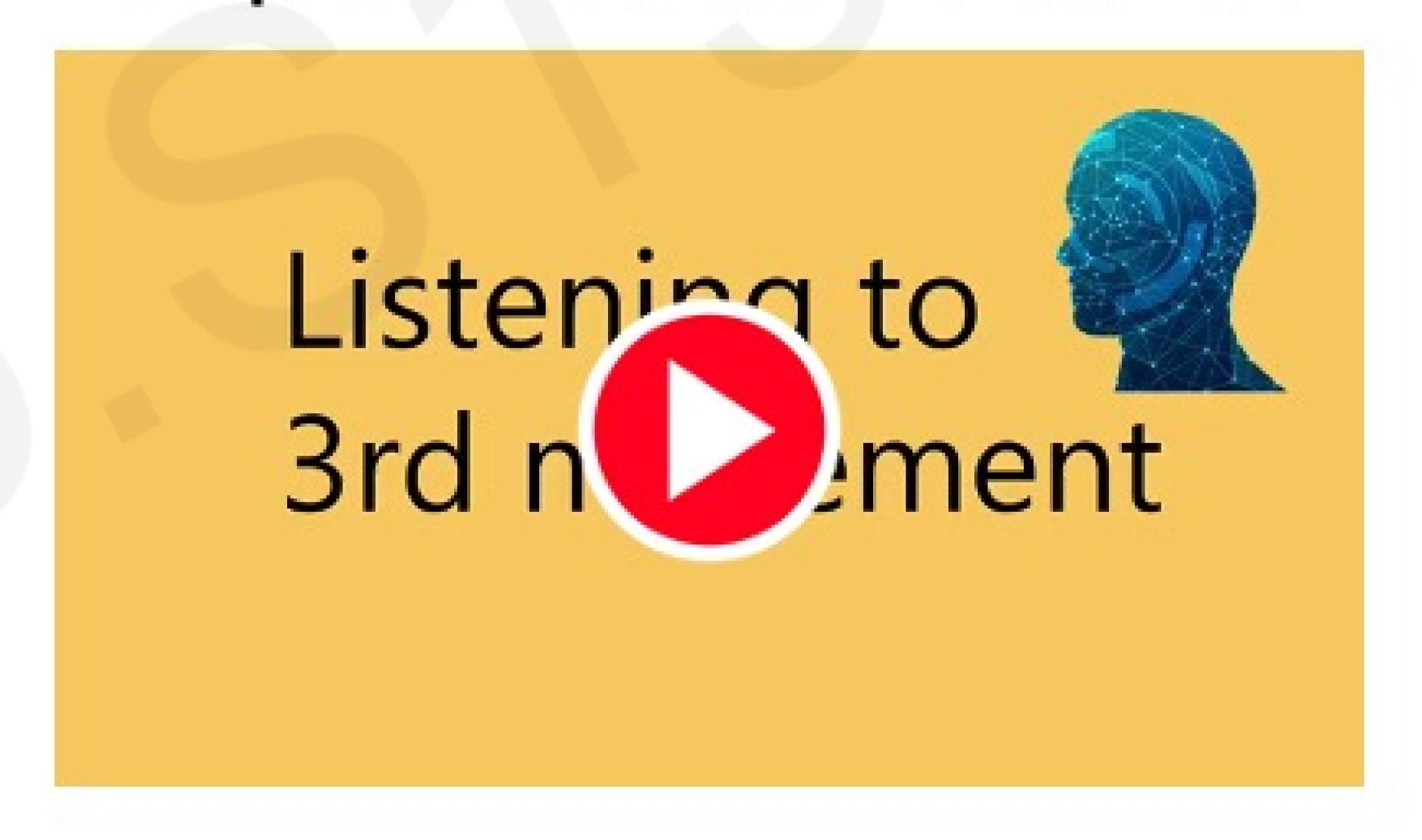
RNN Applications & Limitations

Example Task: Music Generation



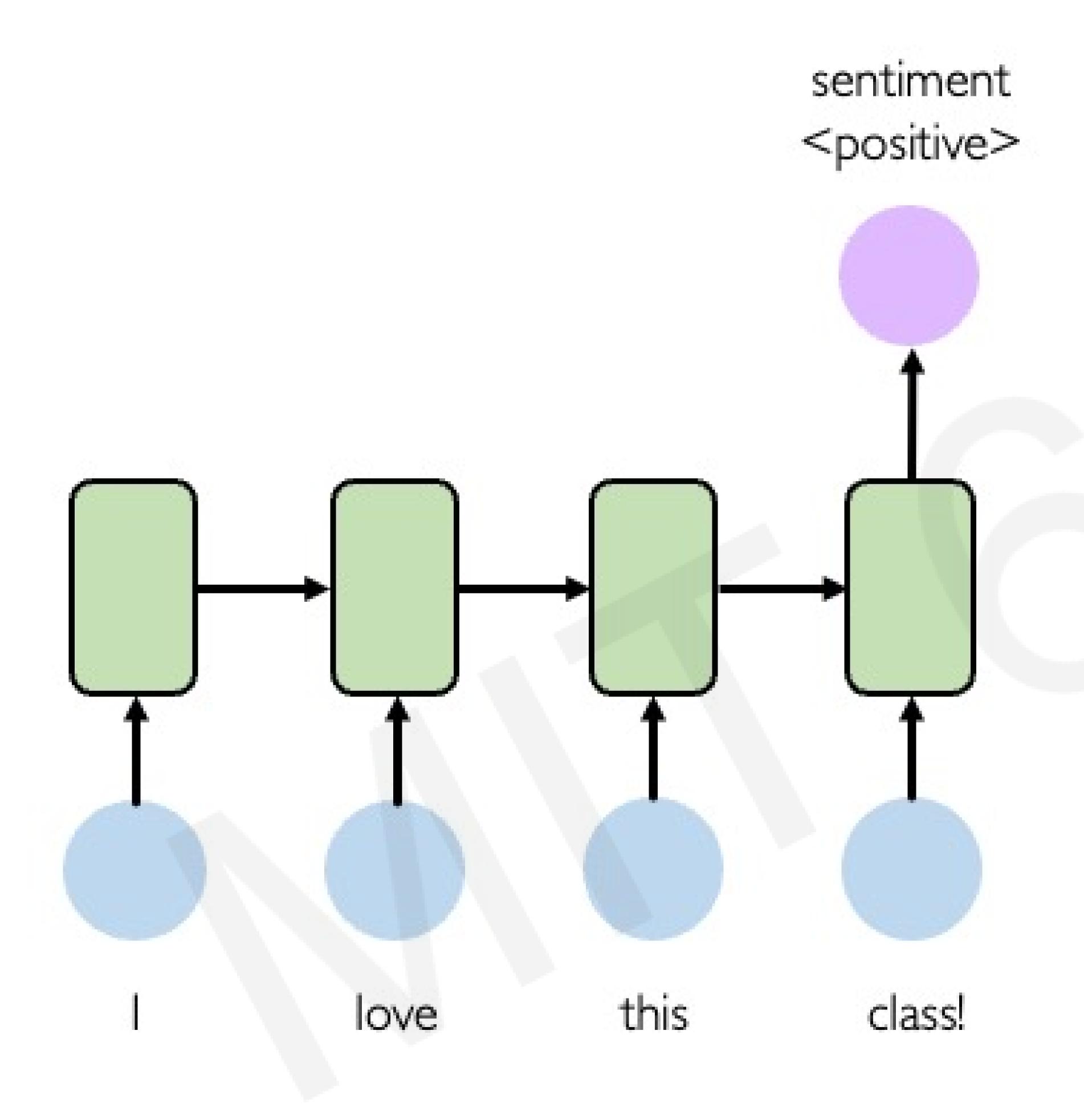
Input: sheet music

Output: next character in sheet music





Example Task: Sentiment Classification

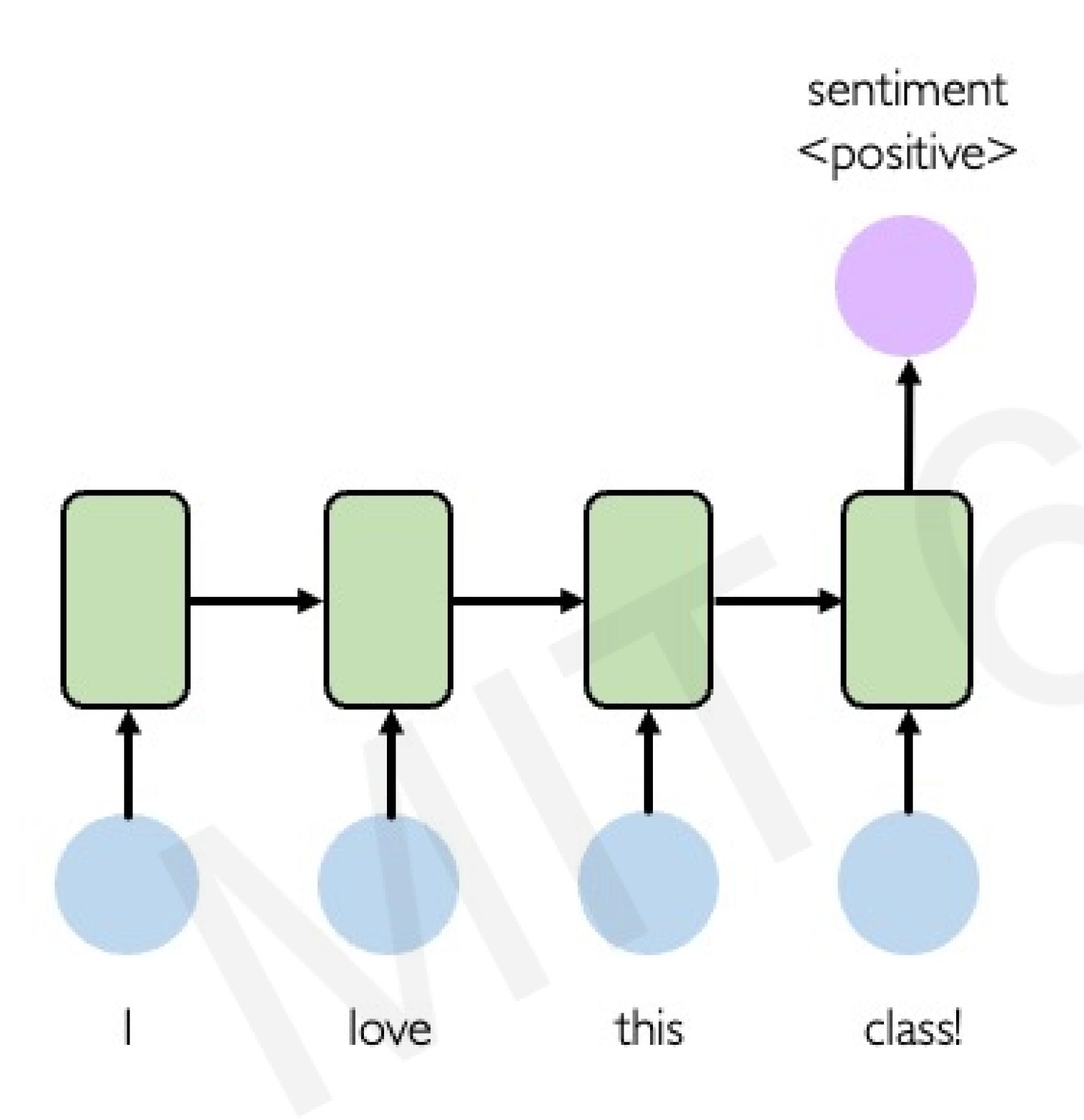


Input: sequence of words

Output: probability of having positive sentiment

loss = tf.nn.softmax_cross_entropy_with_logits(y, predicted)

Example Task: Sentiment Classification



Tweet sentiment classification

The @MIT Introduction to #DeepLearning is definitely one of the best courses of its kind currently available online introtodeeplearning.com

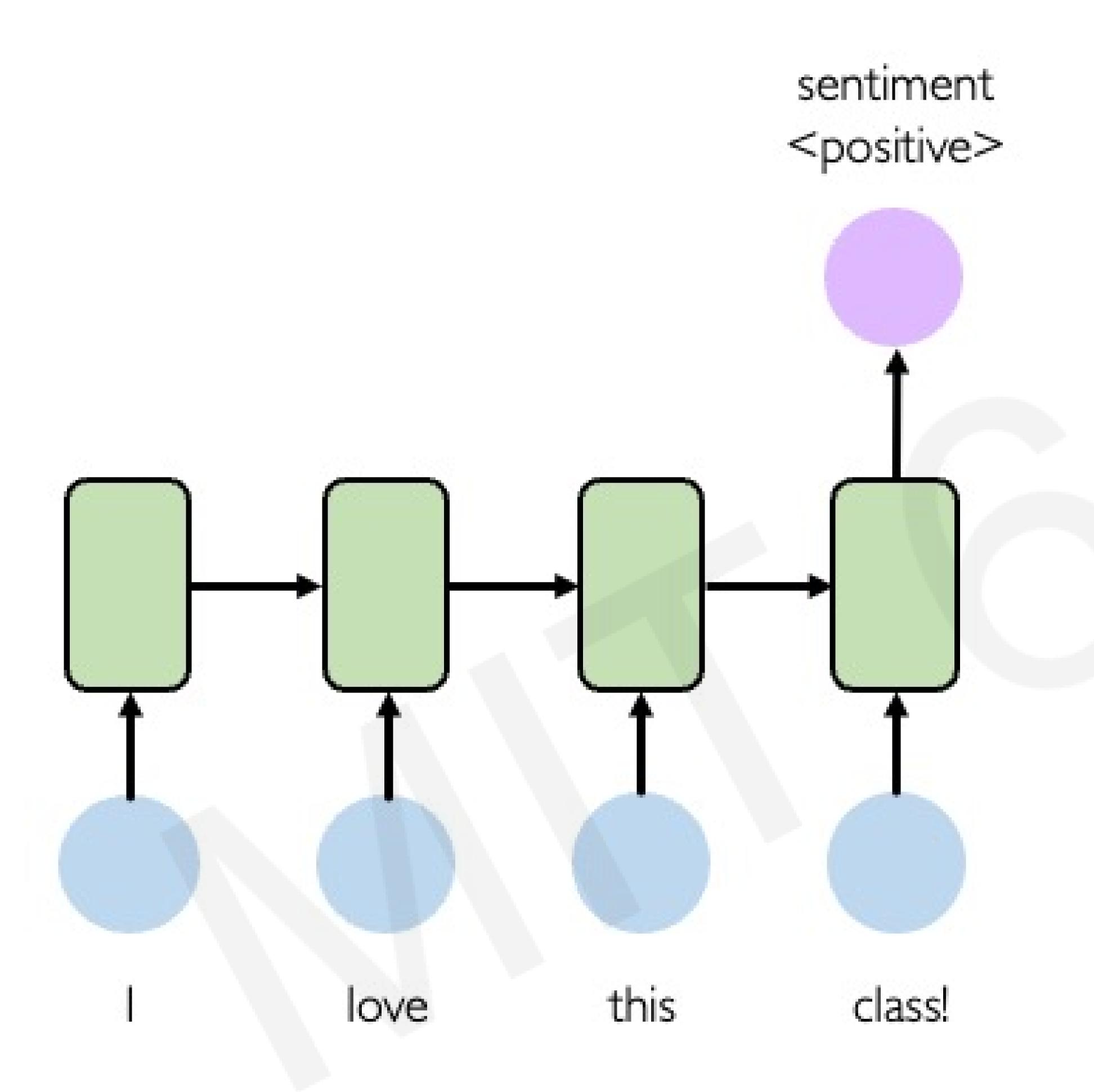
12:45 PM - 12 Feb 2018

Replying to @Kazuki2048

I wouldn't mind a bit of snow right now. We haven't had any in my bit of the Midlands this winter! :(

2:19 AM - 25 Jan 2019

Limitations of Recurrent Models



Limitations of RNNs

Slow, no parallelization

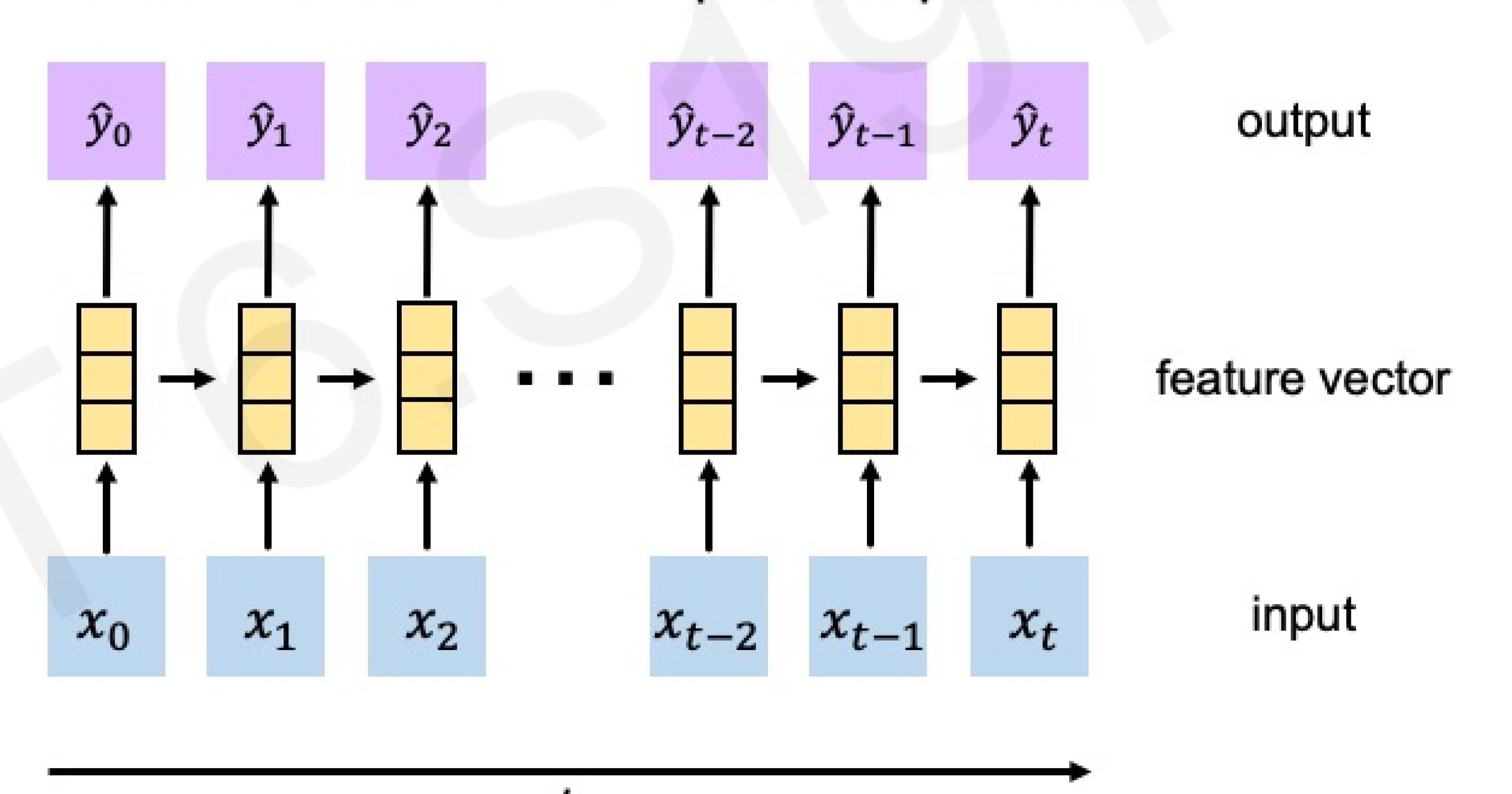
Not long memory

RNNs: recurrence to model sequence dependencies

Sequence of outputs

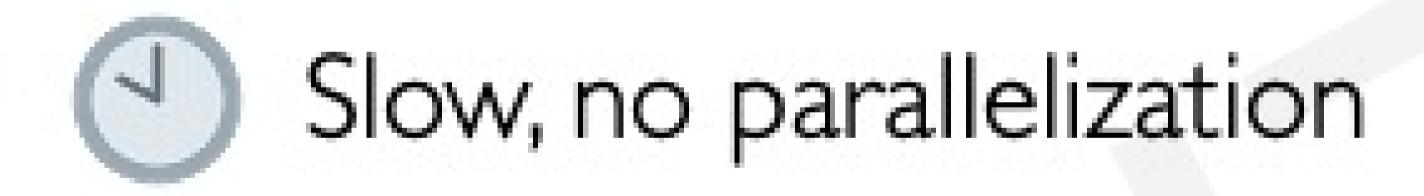
Sequence of features

Sequence of inputs

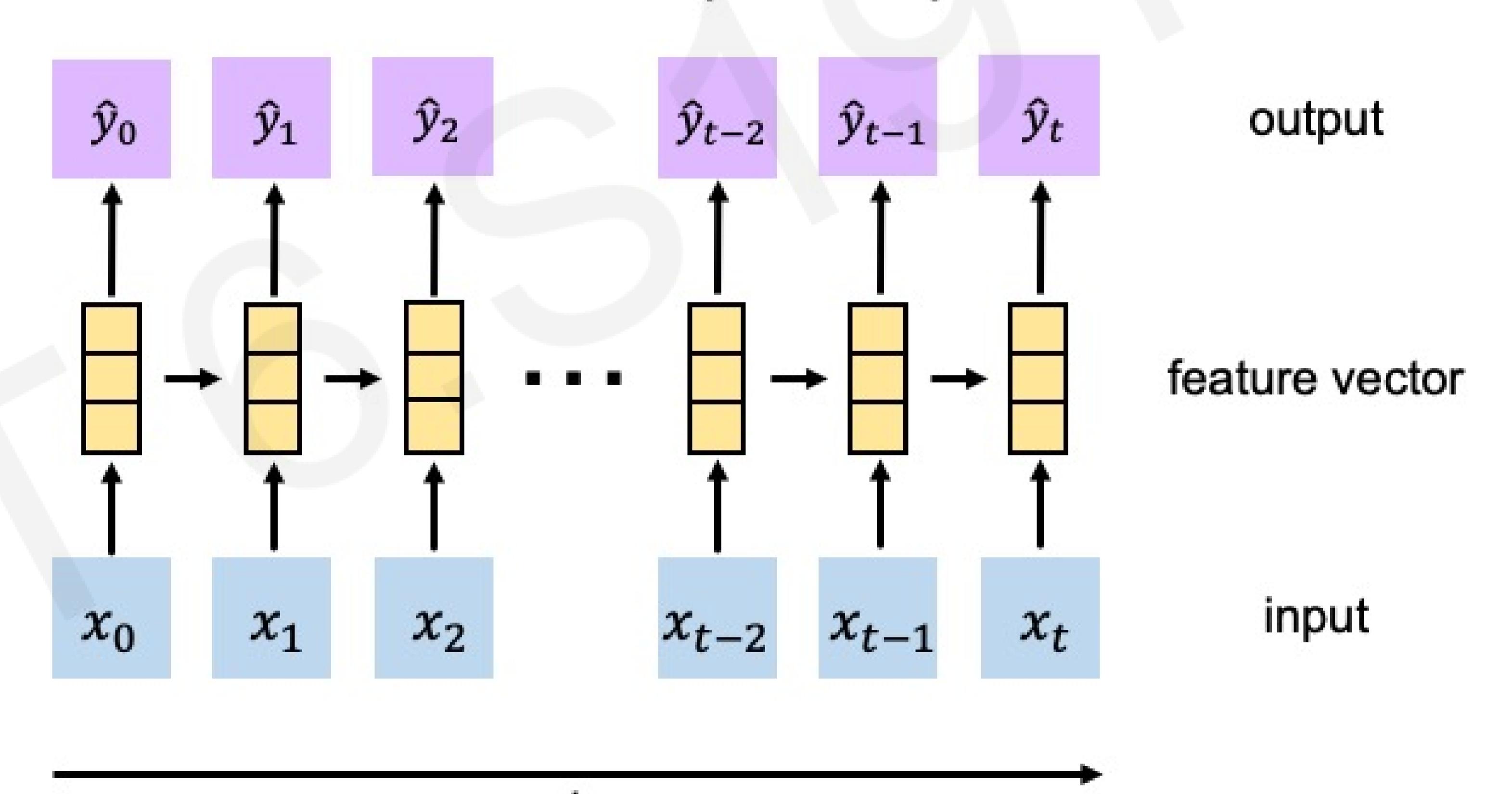


RNNs: recurrence to model sequence dependencies

Limitations of RNNs



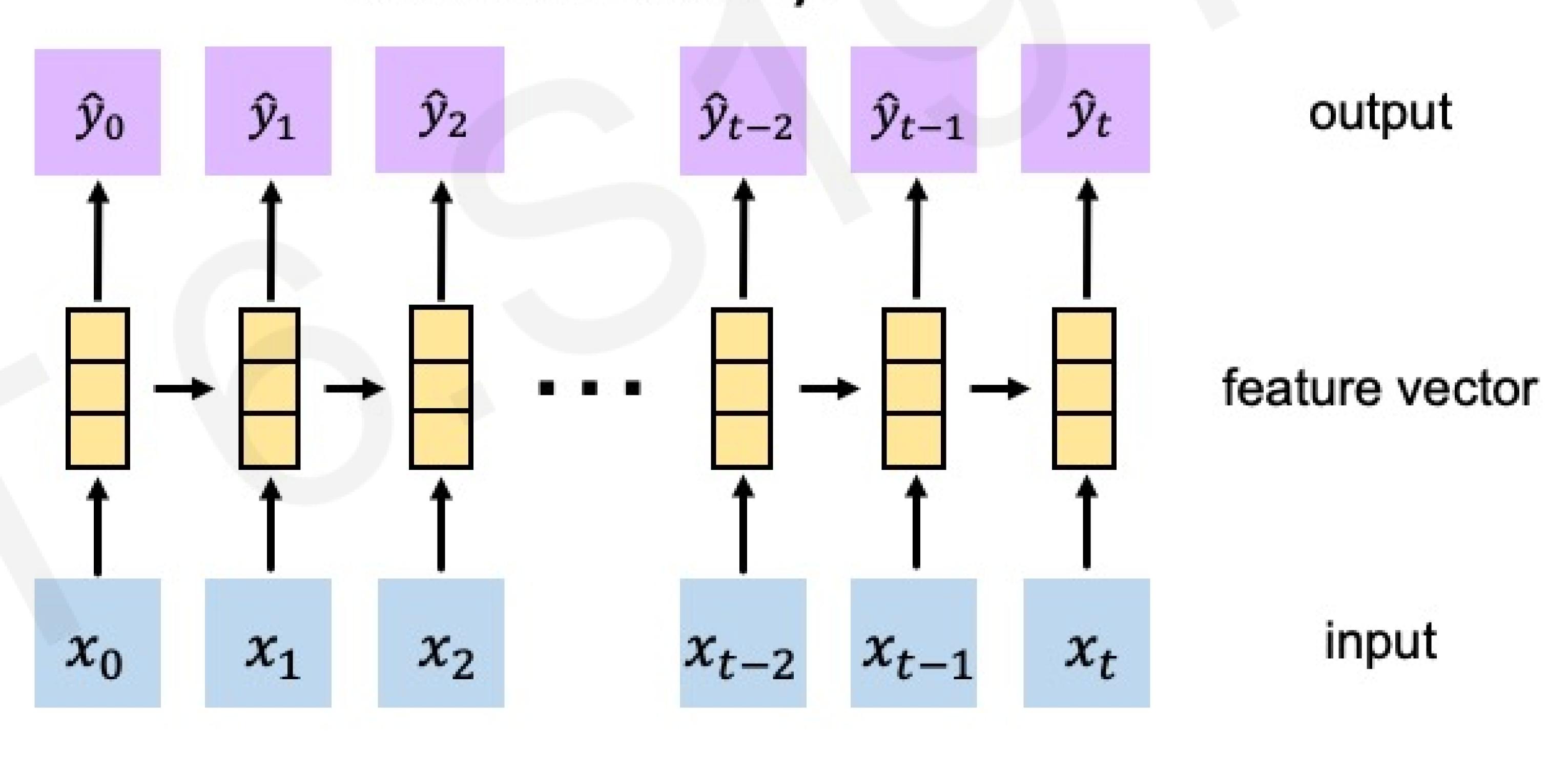
Not long memory

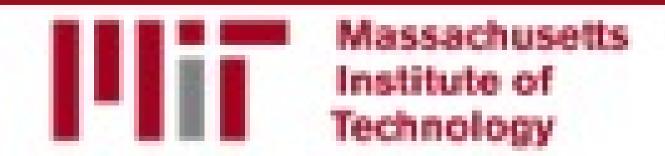


Can we eliminate the need for recurrence entirely?

Desired Capabilities

Long memory

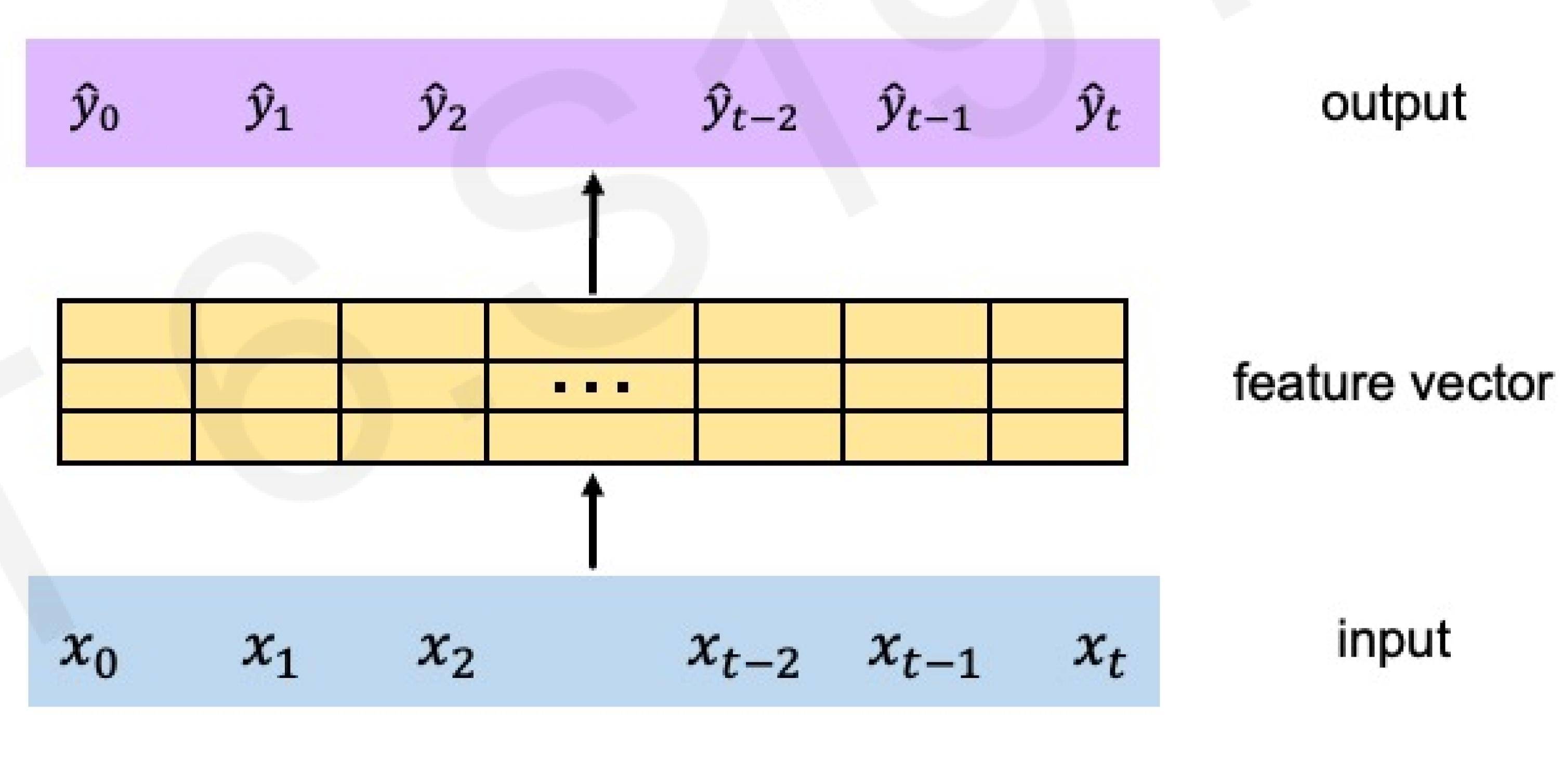


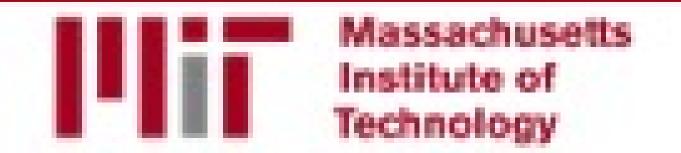


Can we eliminate the need for recurrence entirely?

Desired Capabilities

Long memory





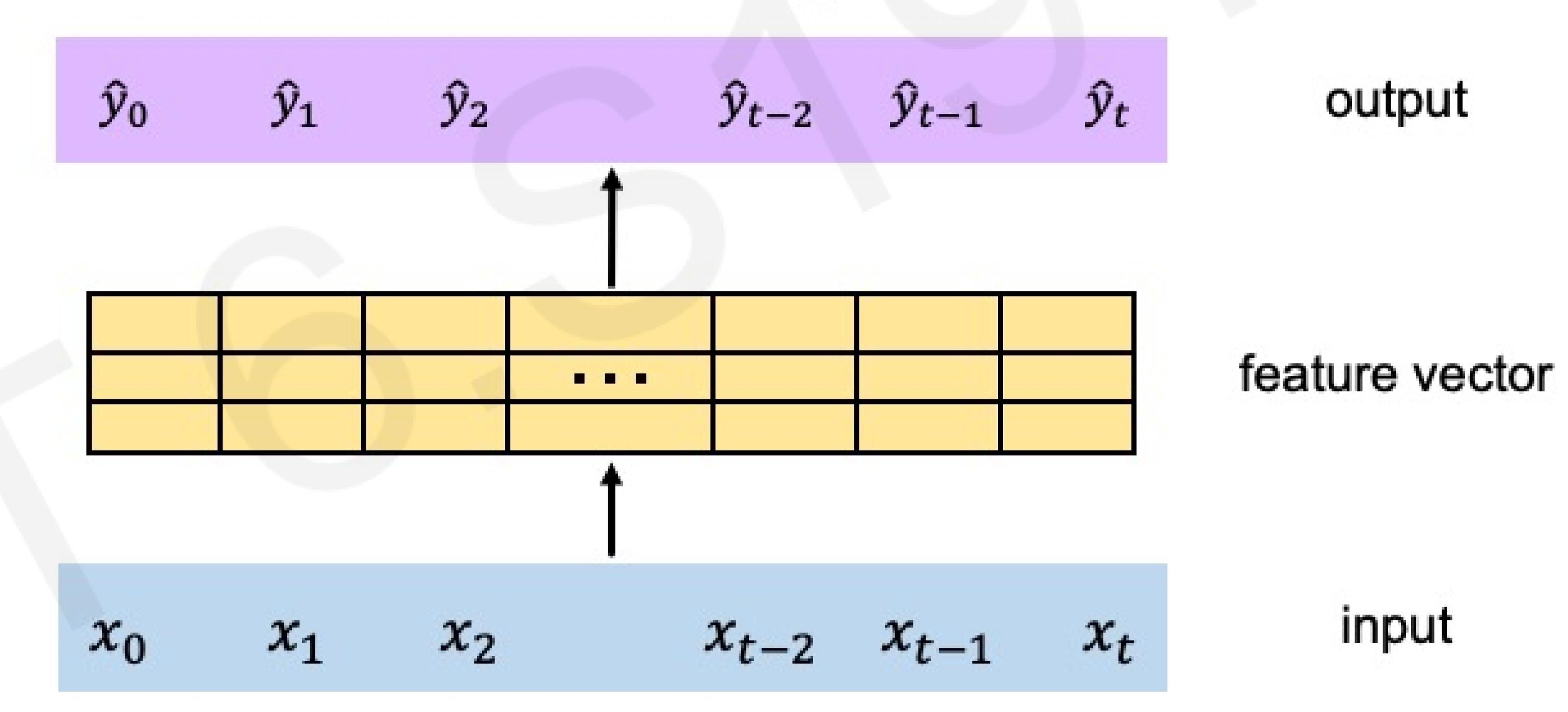
Idea I: Feed everything into dense network

No recurrence

- X No order
- X No long memory

Idea: Identify and attend to what's important

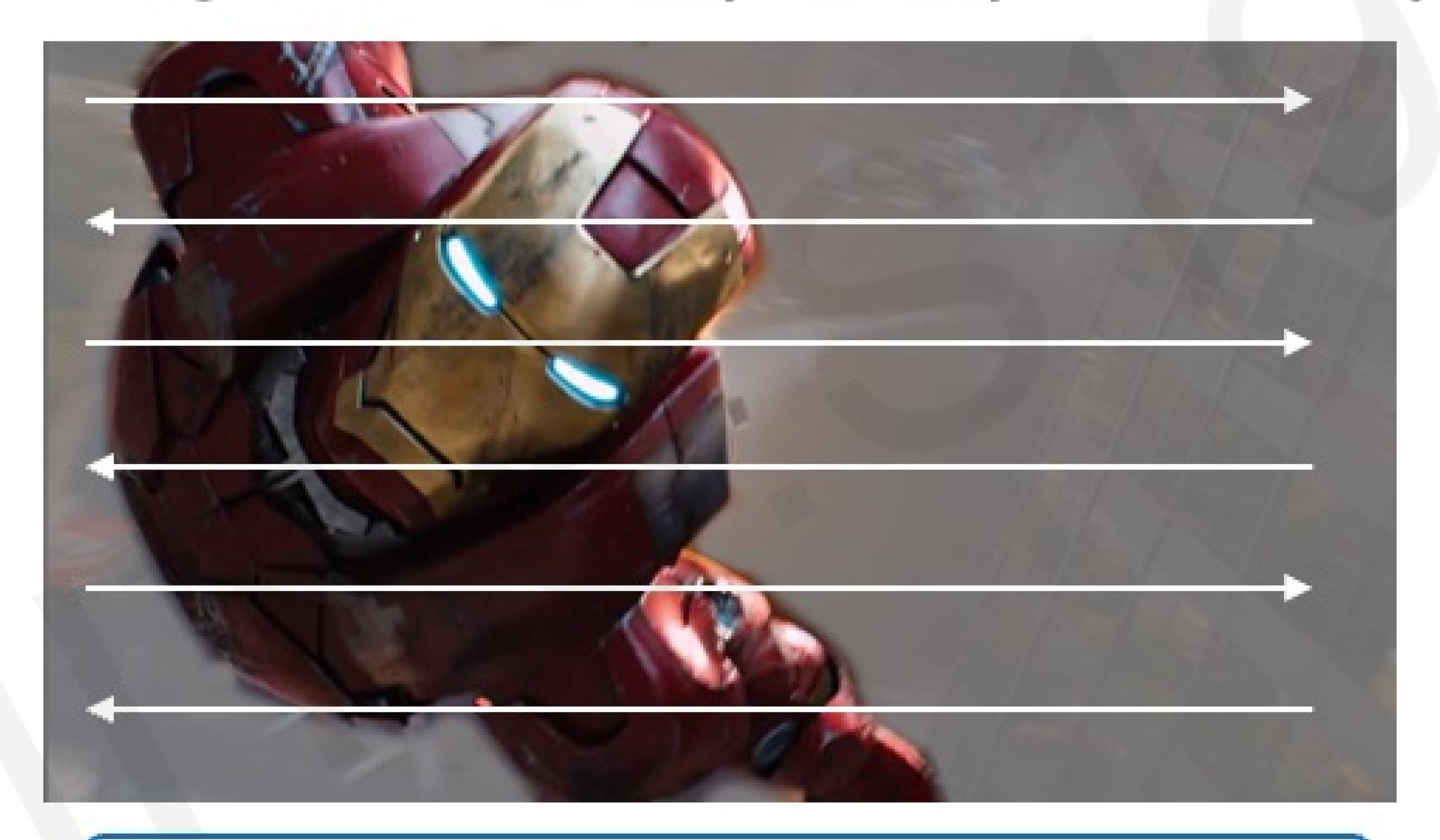
Can we eliminate the need for recurrence entirely?



Attention Is All You Need

Intuition Behind Self-Attention

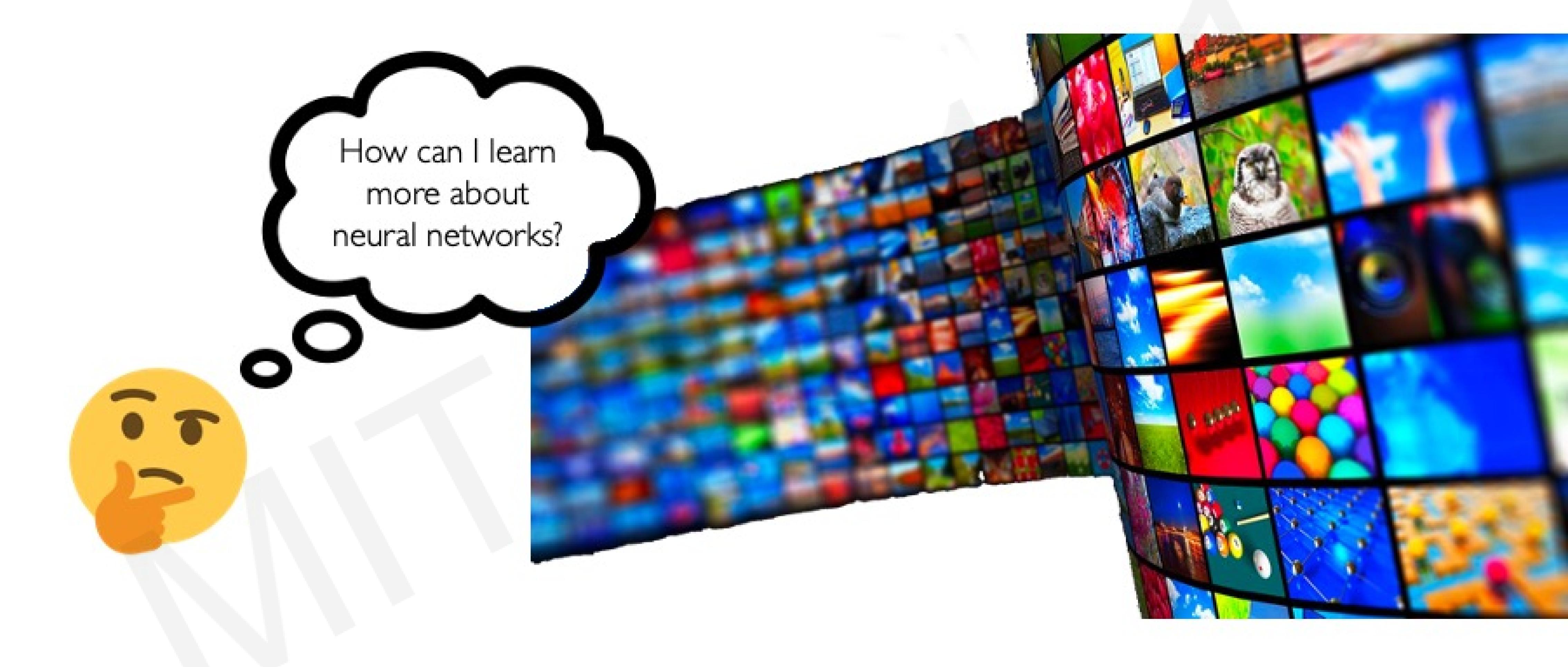
Attending to the most important parts of an input.



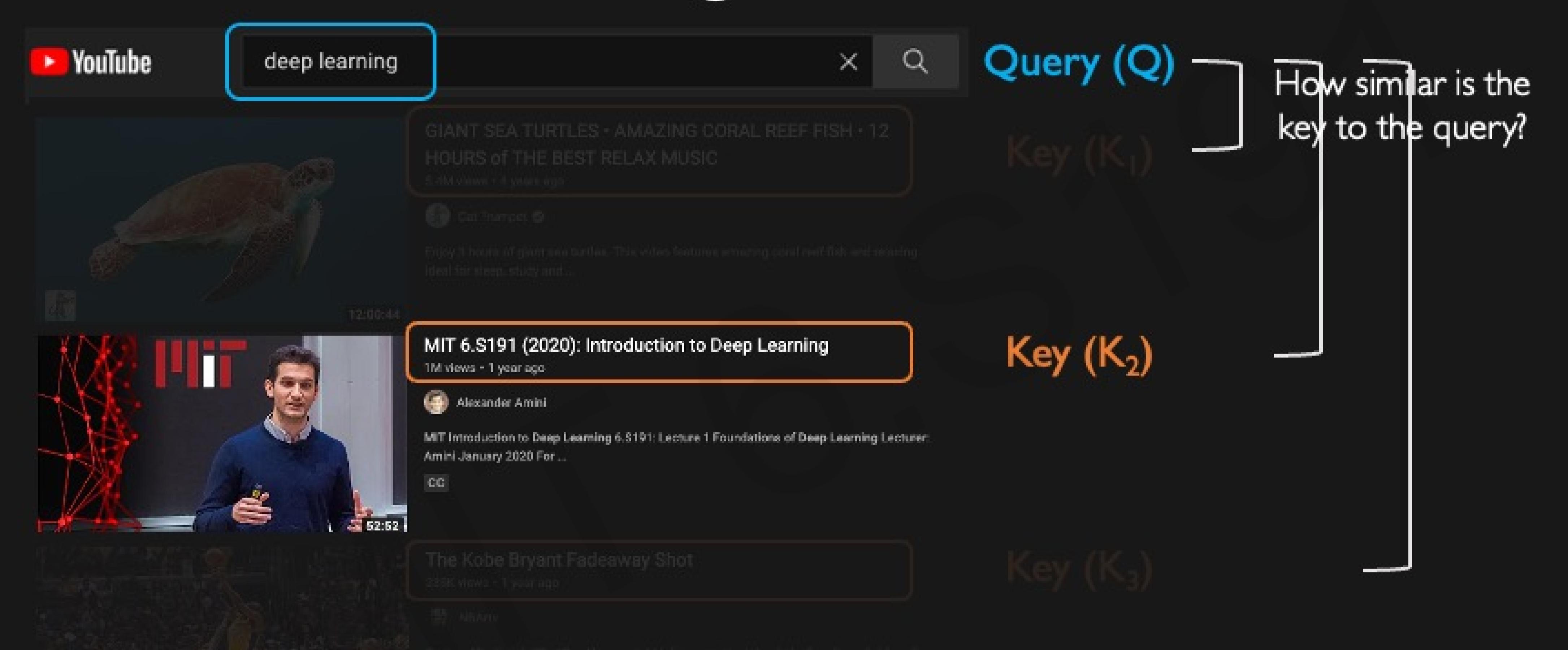
- I. Identify which parts to attend to
- 2. Extract the features with high attention

Similar to a search problem!

A Simple Example: Search

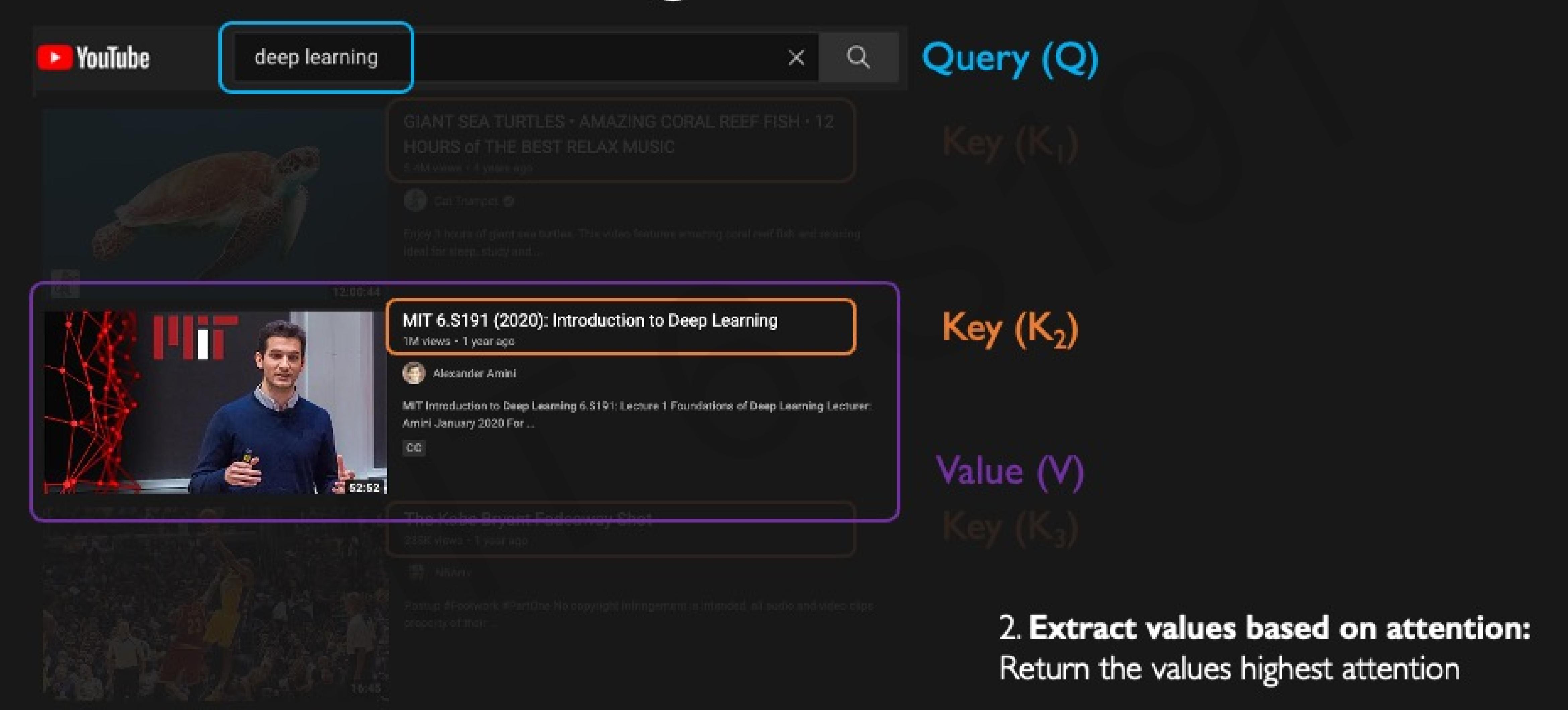


Understanding Attention with Search



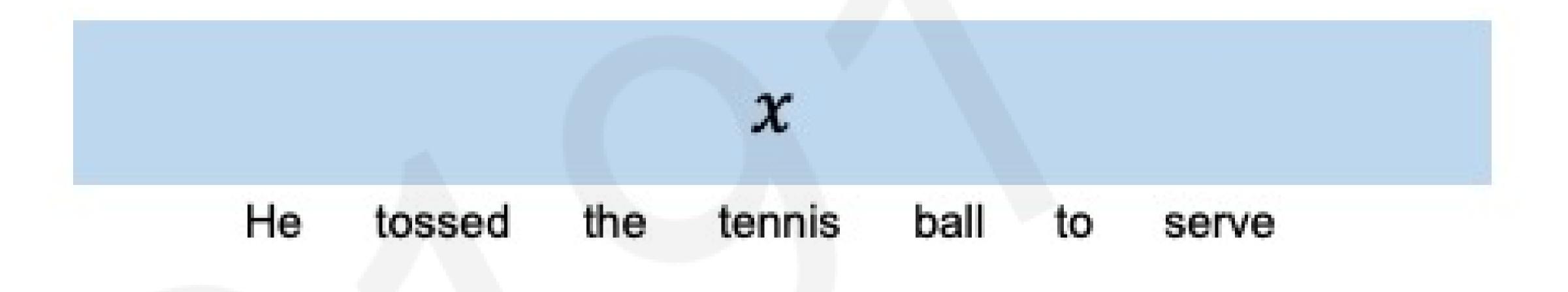
l. Compute attention mask: how similar is each key to the desired query?

Understanding Attention with Search



Goal: identify and attend to most important features in input.

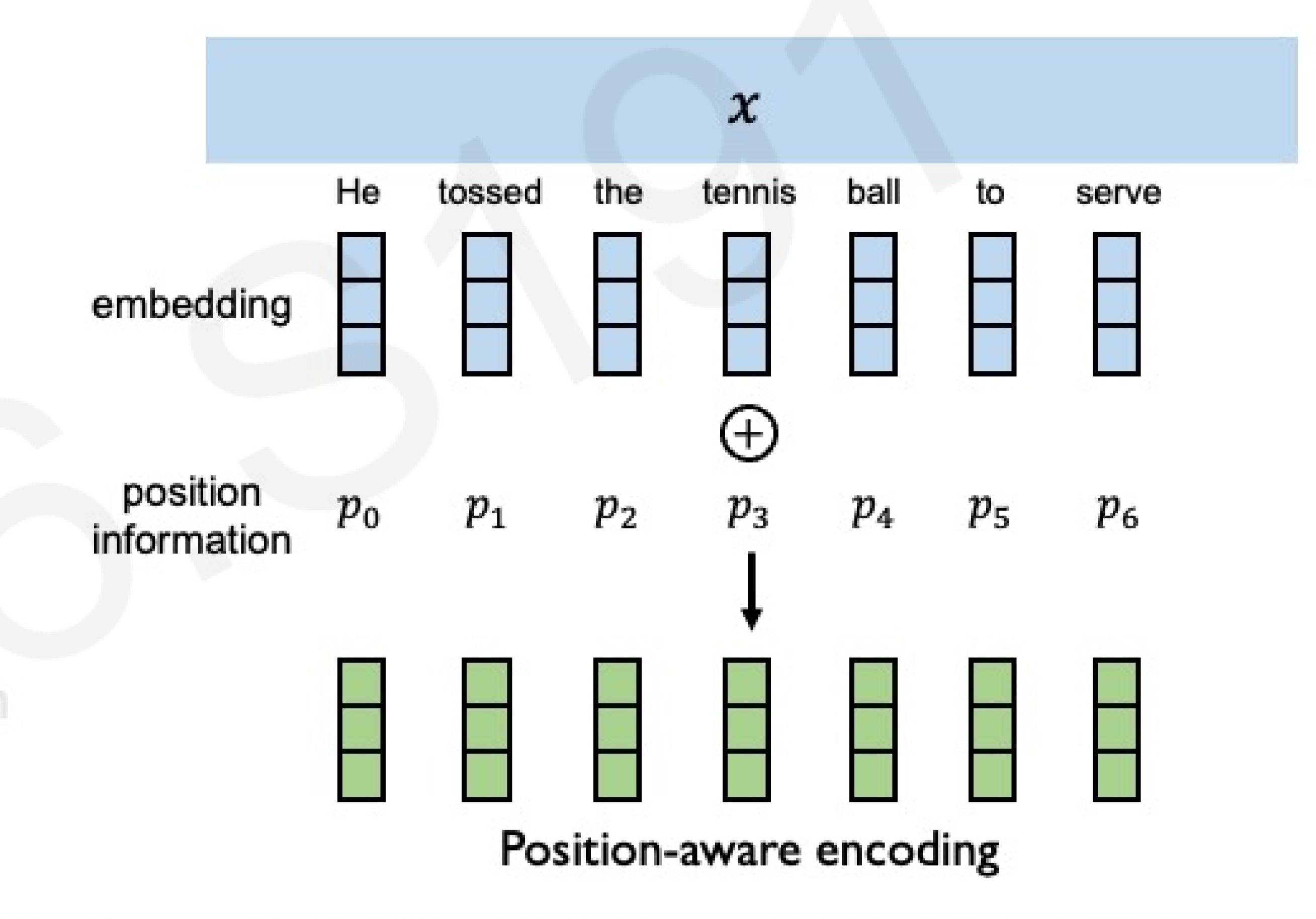
- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention



Data is fed in all at once! Need to encode position information to understand order.

Goal: identify and attend to most important features in input.

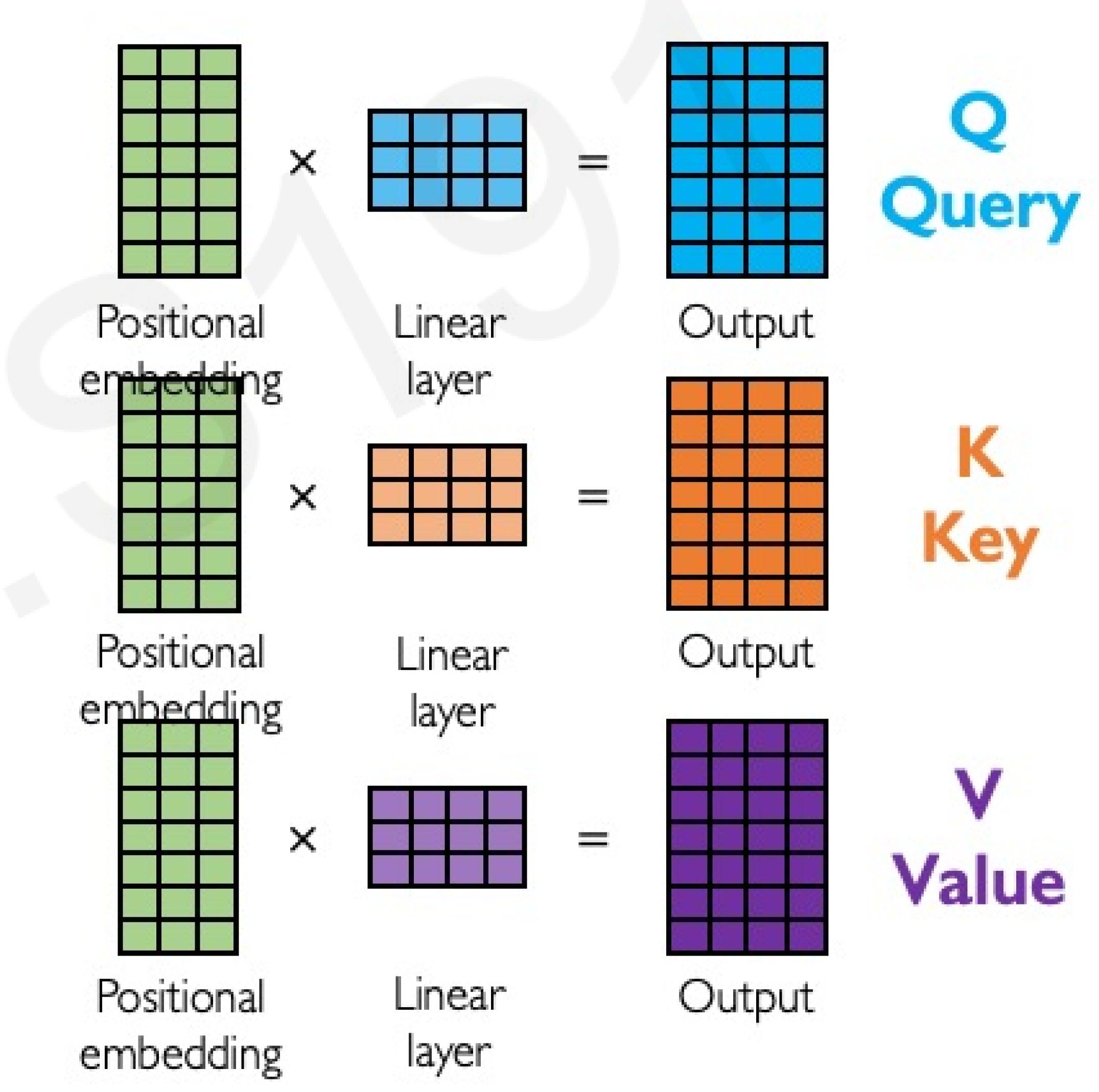
- 1. Encode **position** information
- 2. Extract query, key, value for search
- 4. Extract features with high attention



Data is fed in all at once! Need to encode position information to understand order.

Goal: identify and attend to most important features in input.

- Encode **position** information
- Extract query, key, value for search
- 4. Extract features with high attention

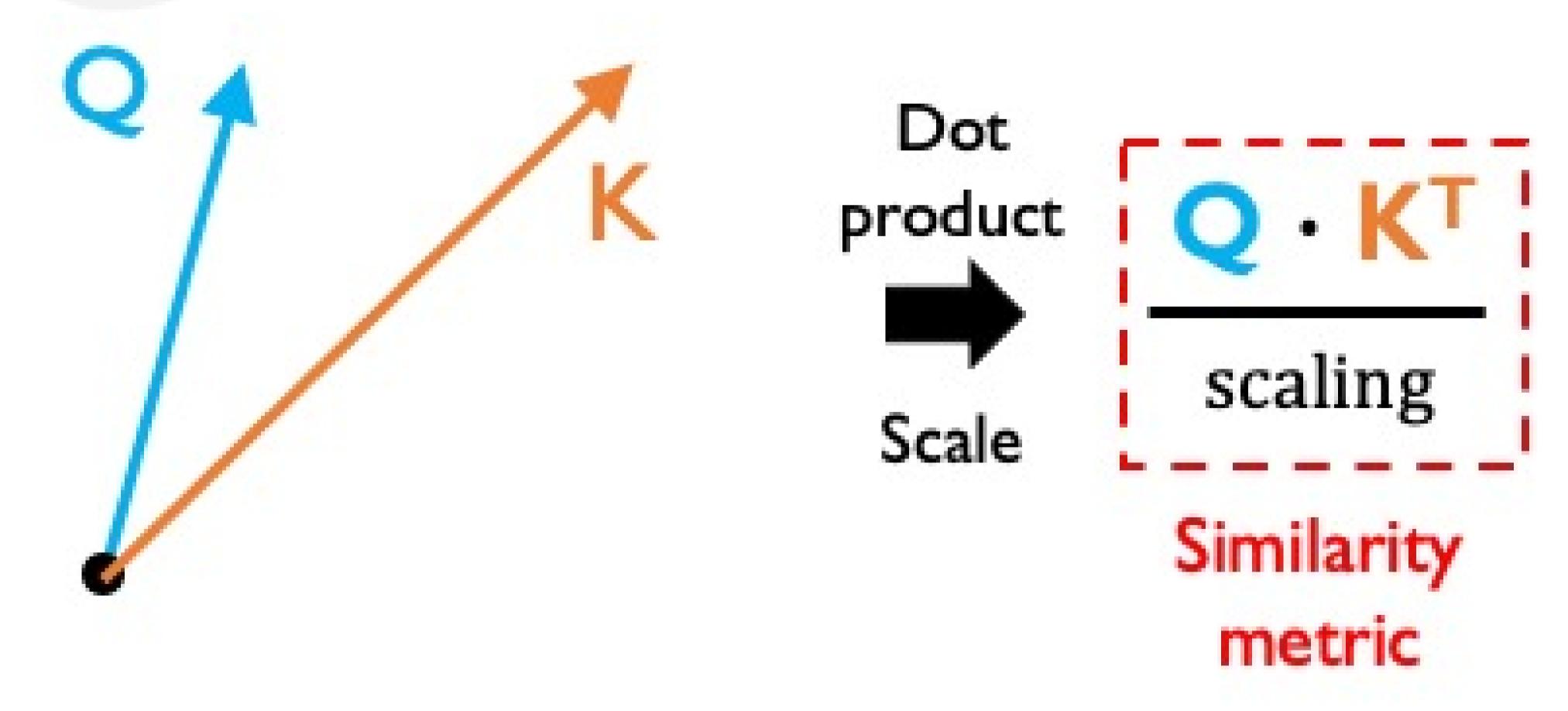


Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Attention score: compute pairwise similarity between each query and key

How to compute similarity between two sets of features?



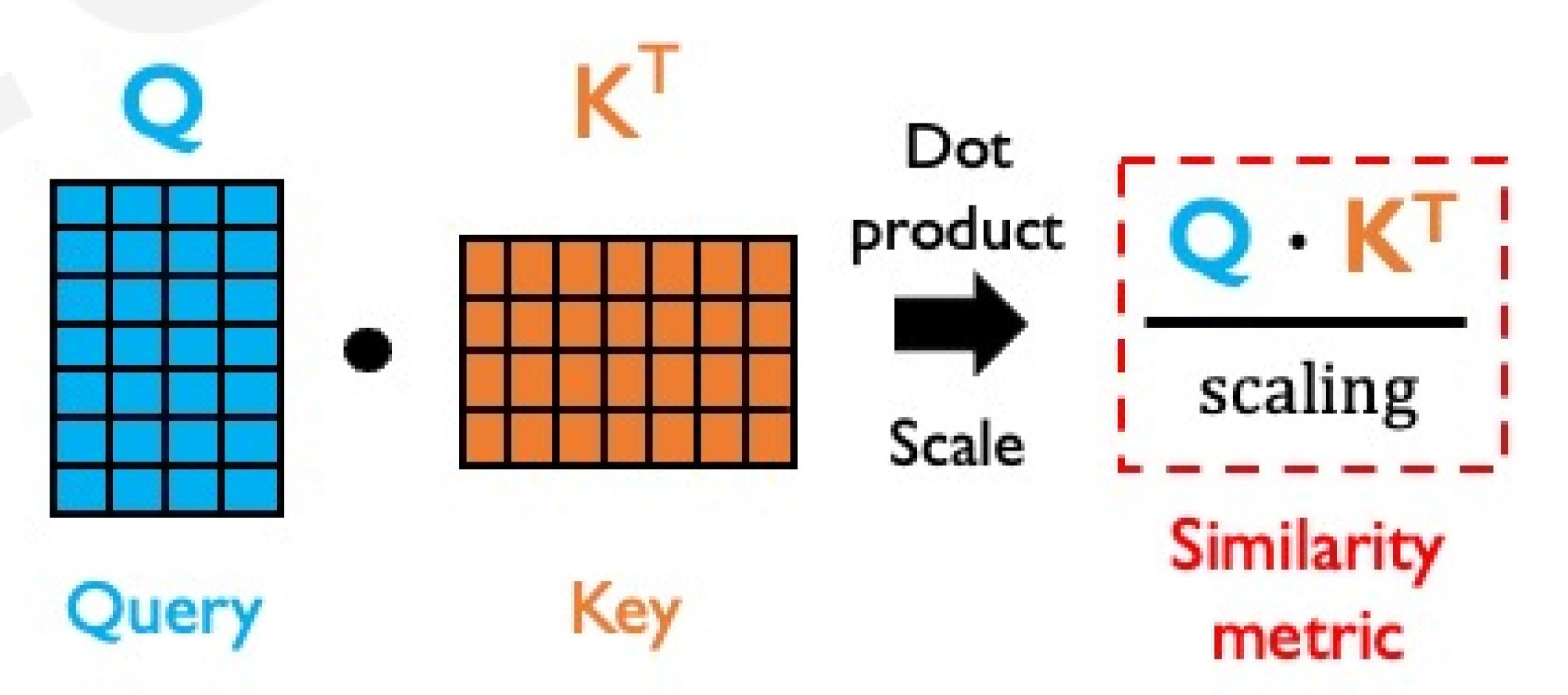
Also known as the "cosine similarity"

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Attention score: compute pairwise similarity between each query and key

How to compute similarity between two sets of features?

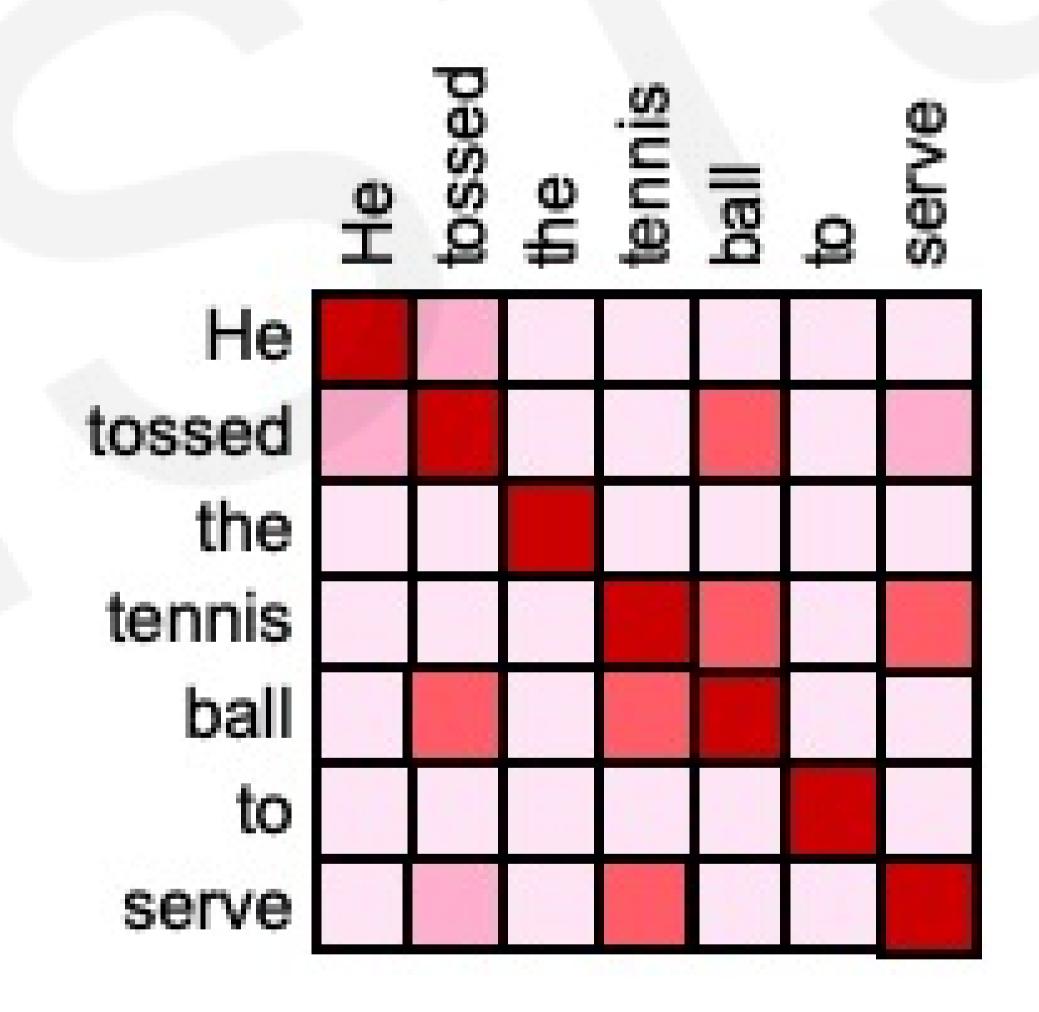


Also known as the "cosine similarity"

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Attention weighting: where to attend to! How similar is the key to the query?



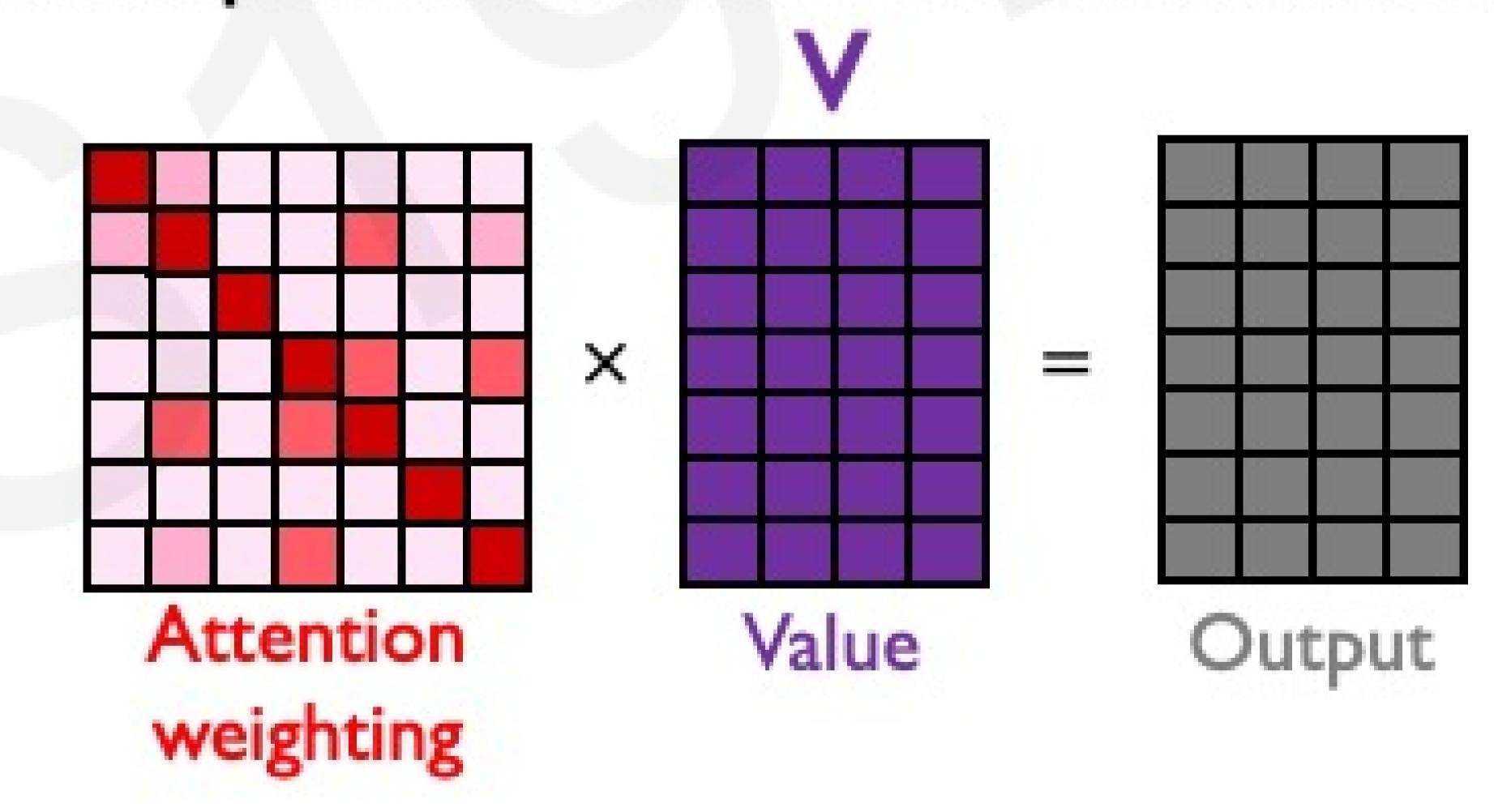
$$softmax \left(\frac{Q \cdot K^T}{scaling} \right)$$

Attention weighting

Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

Last step: self-attend to extract features

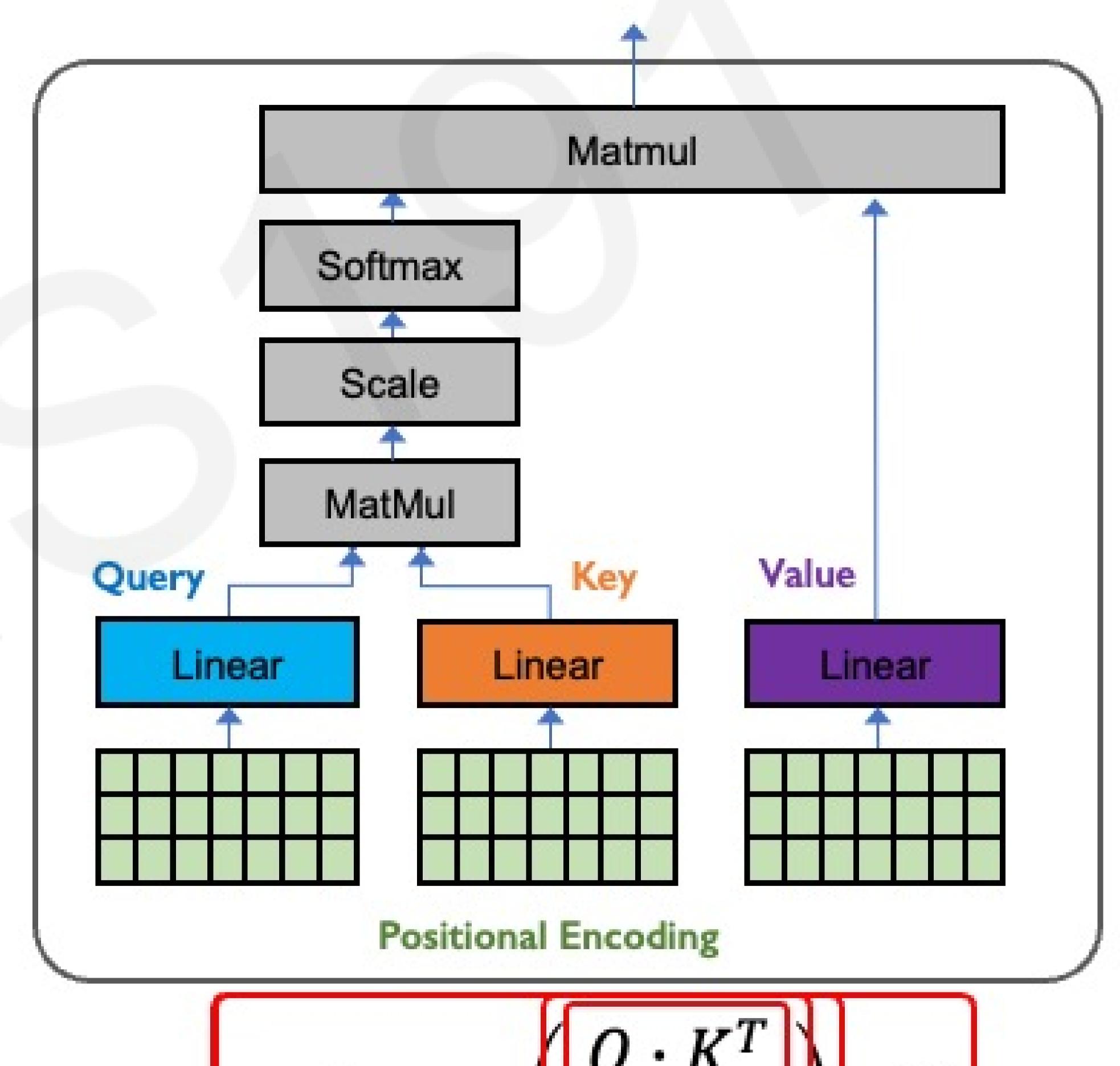


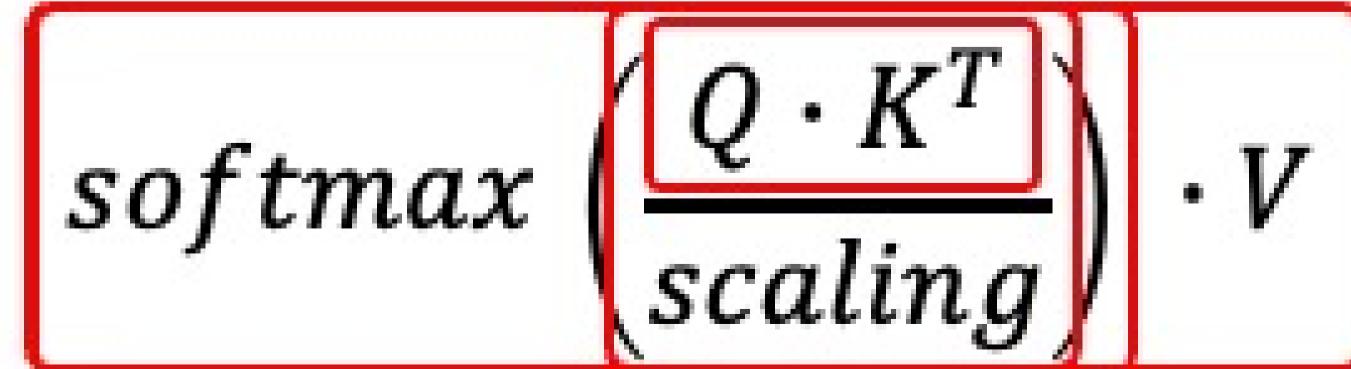
$$softmax \left(\frac{Q \cdot K^{T}}{scaling} \right) \cdot V = A(Q, K, V)$$

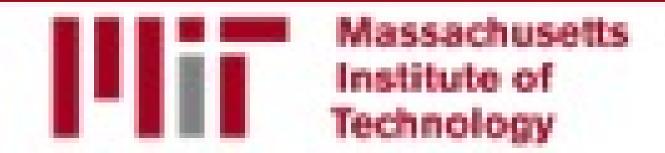
Goal: identify and attend to most important features in input.

- 1. Encode **position** information
- 2. Extract query, key, value for search
- 3. Compute attention weighting
- 4. Extract features with high attention

These operations form a self-attention head that can plug into a larger network. Each head attends to a different part of input.

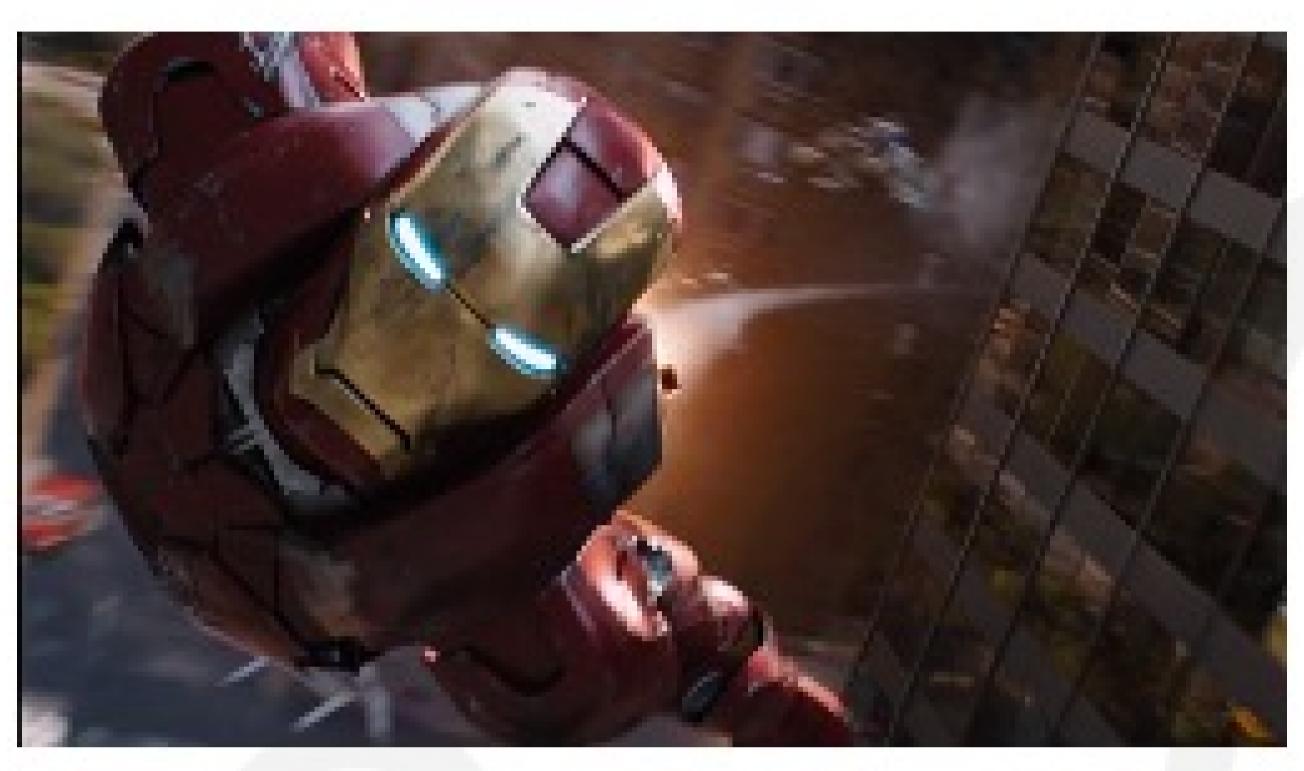




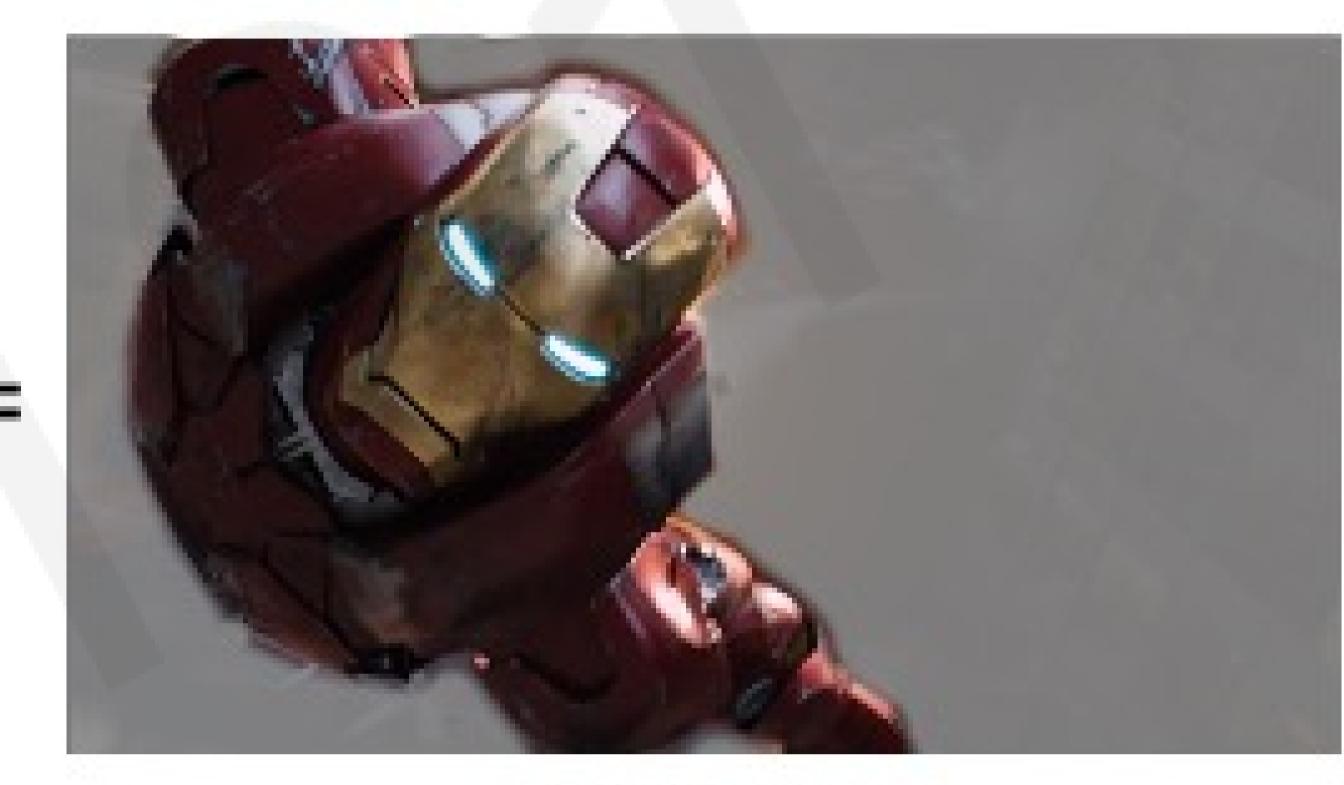


Applying Multiple Self-Attention Heads

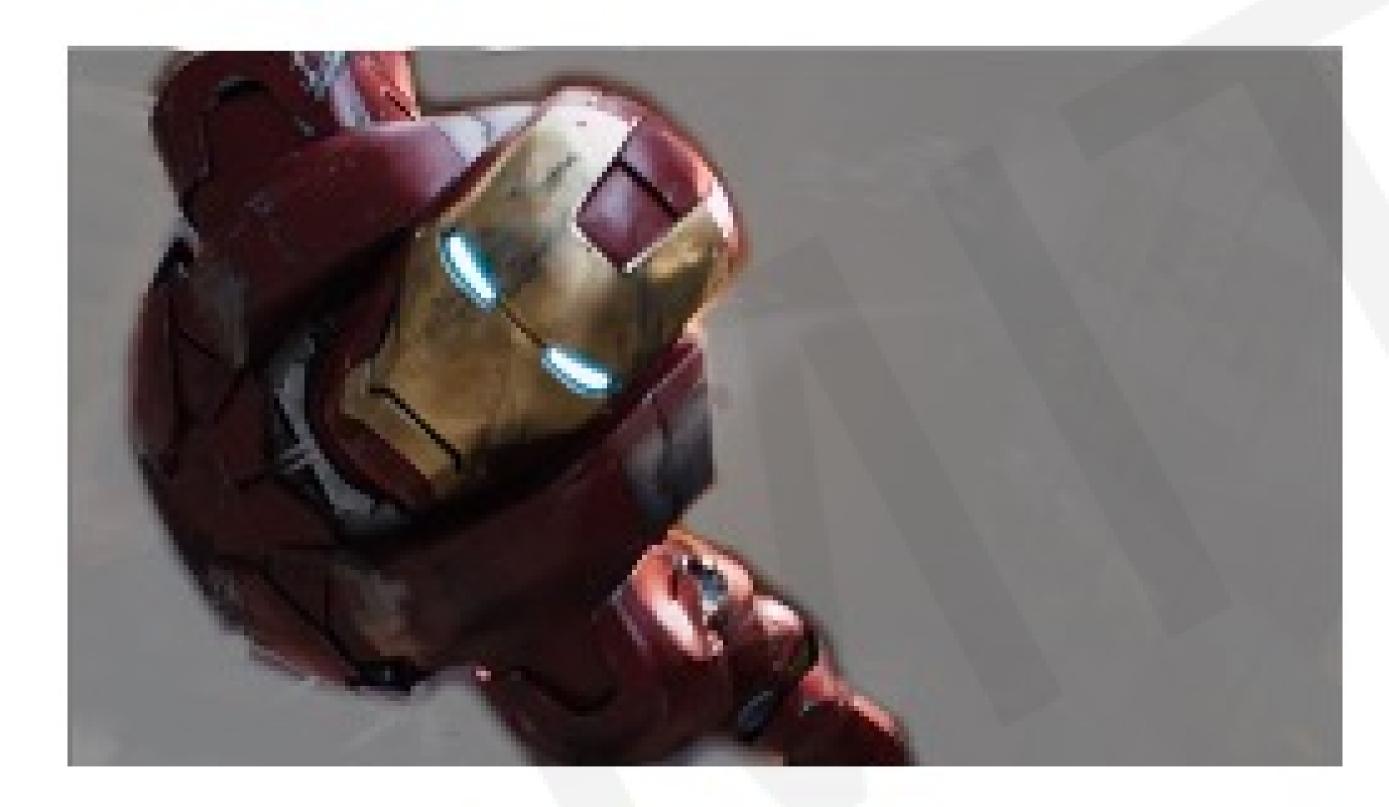
Attention weighting



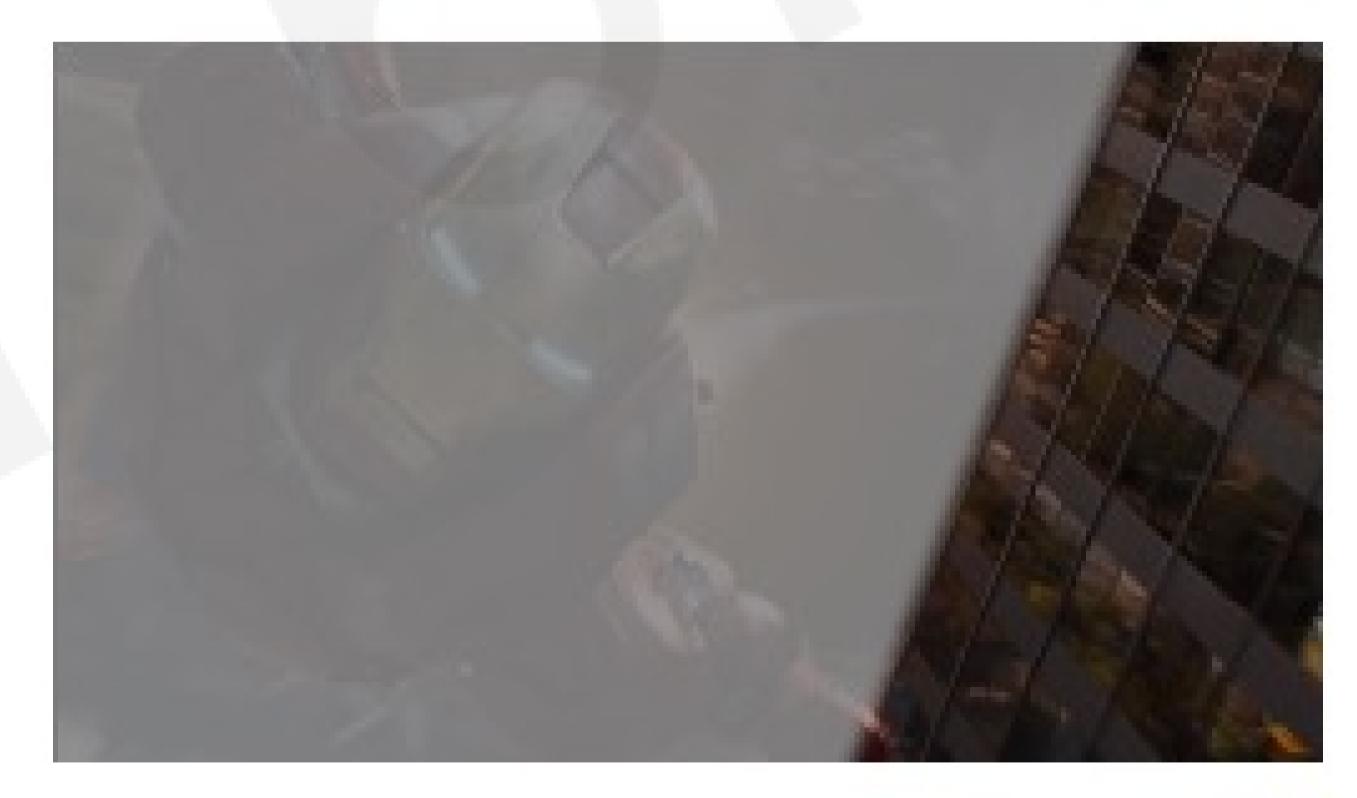
Value



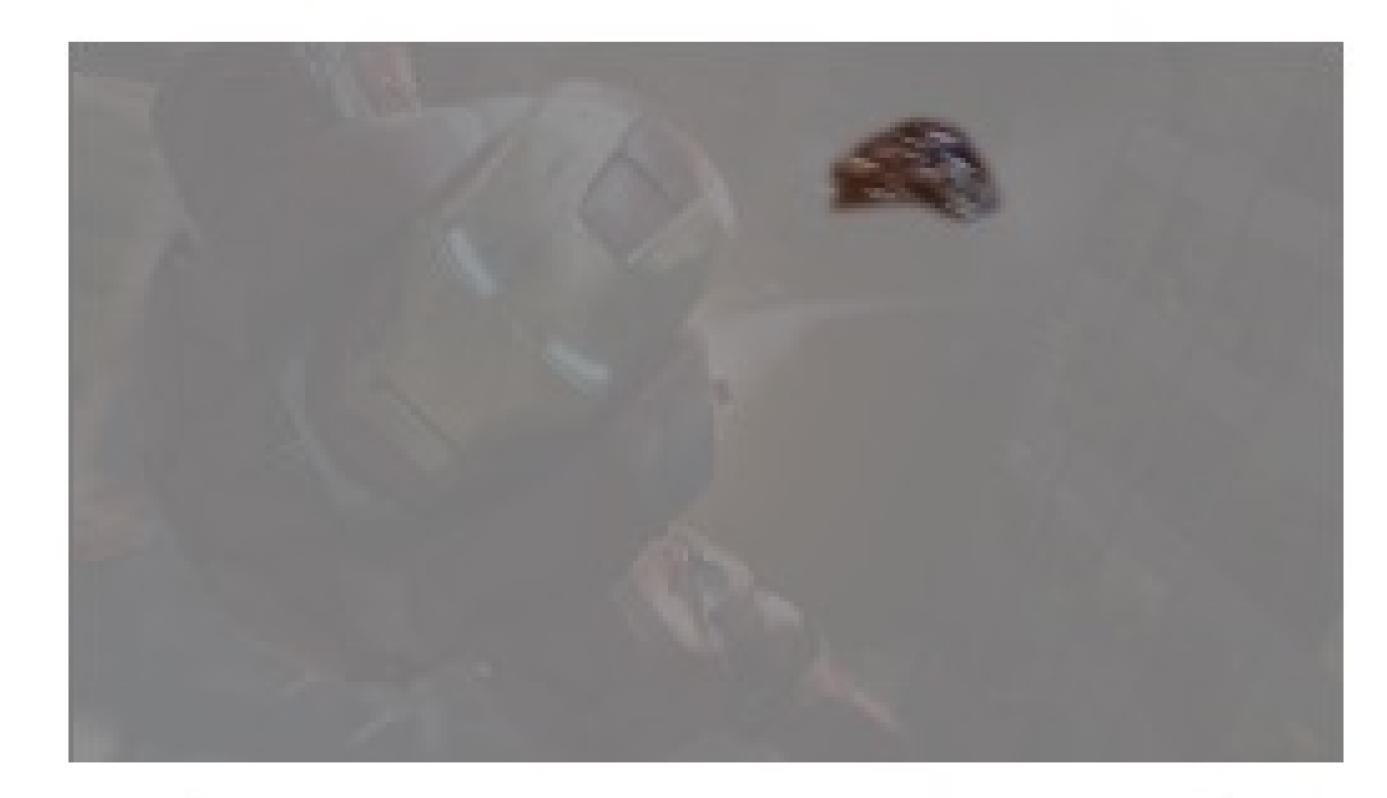
Output



Output of attention head I



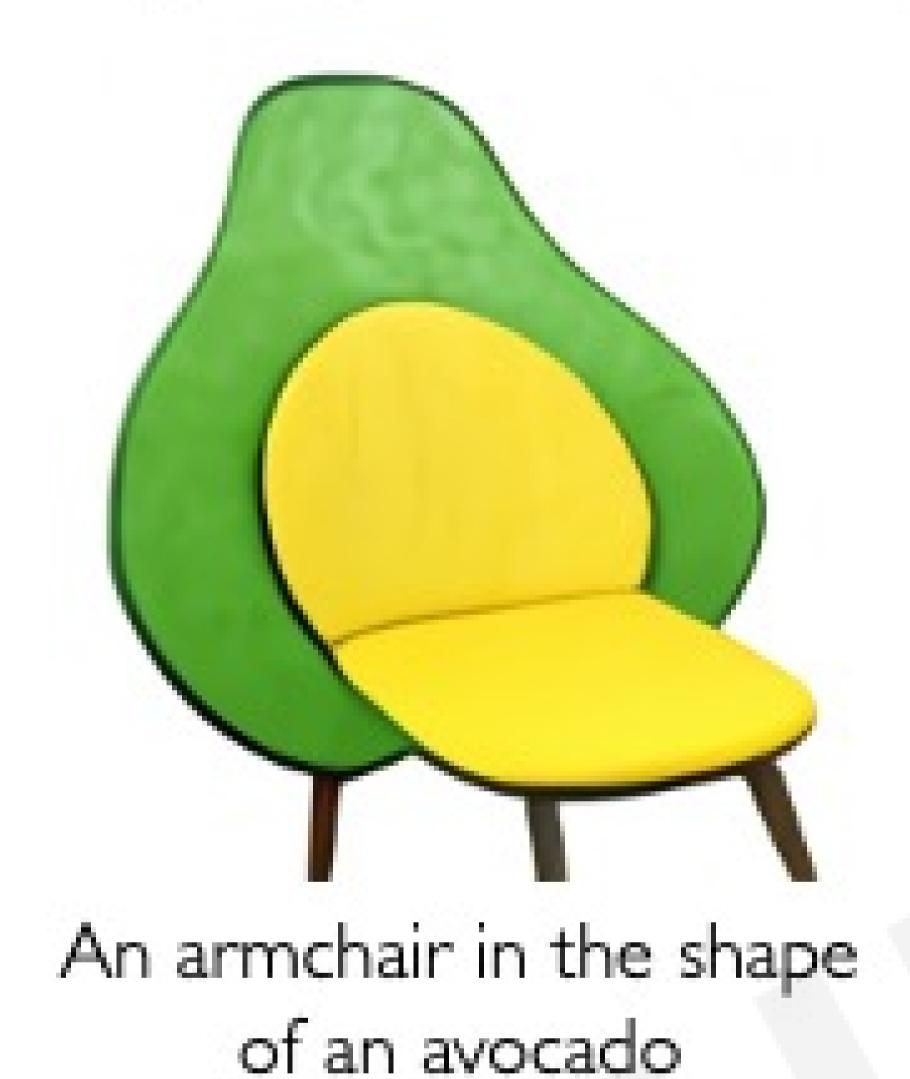
Output of attention head 2



Output of attention head 3

Self-Attention Applied

Language Processing



Transformers: BERT, GPT

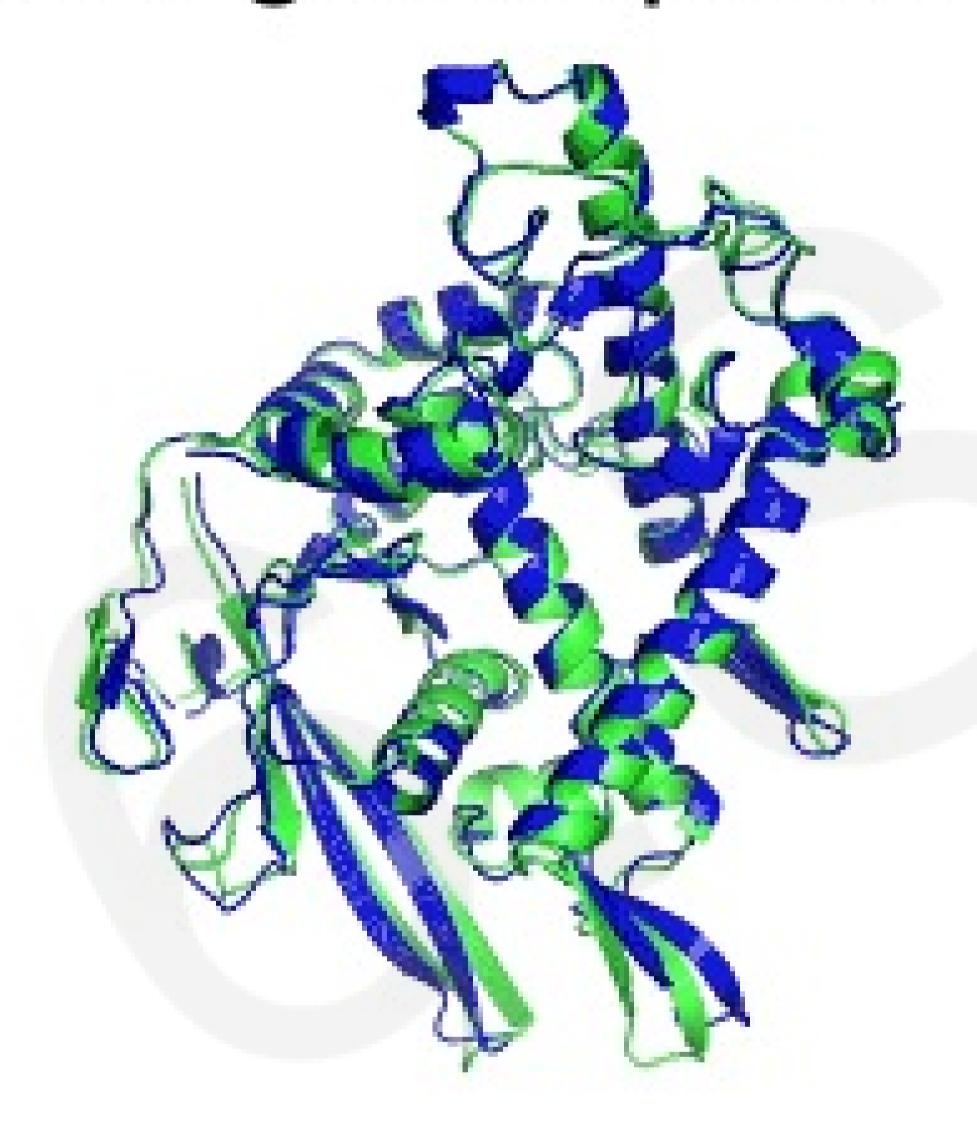
Devlin et al., NAACL 2019 Brown et al., NeurlPS 2020

Massachusetts

Institute of

echnology

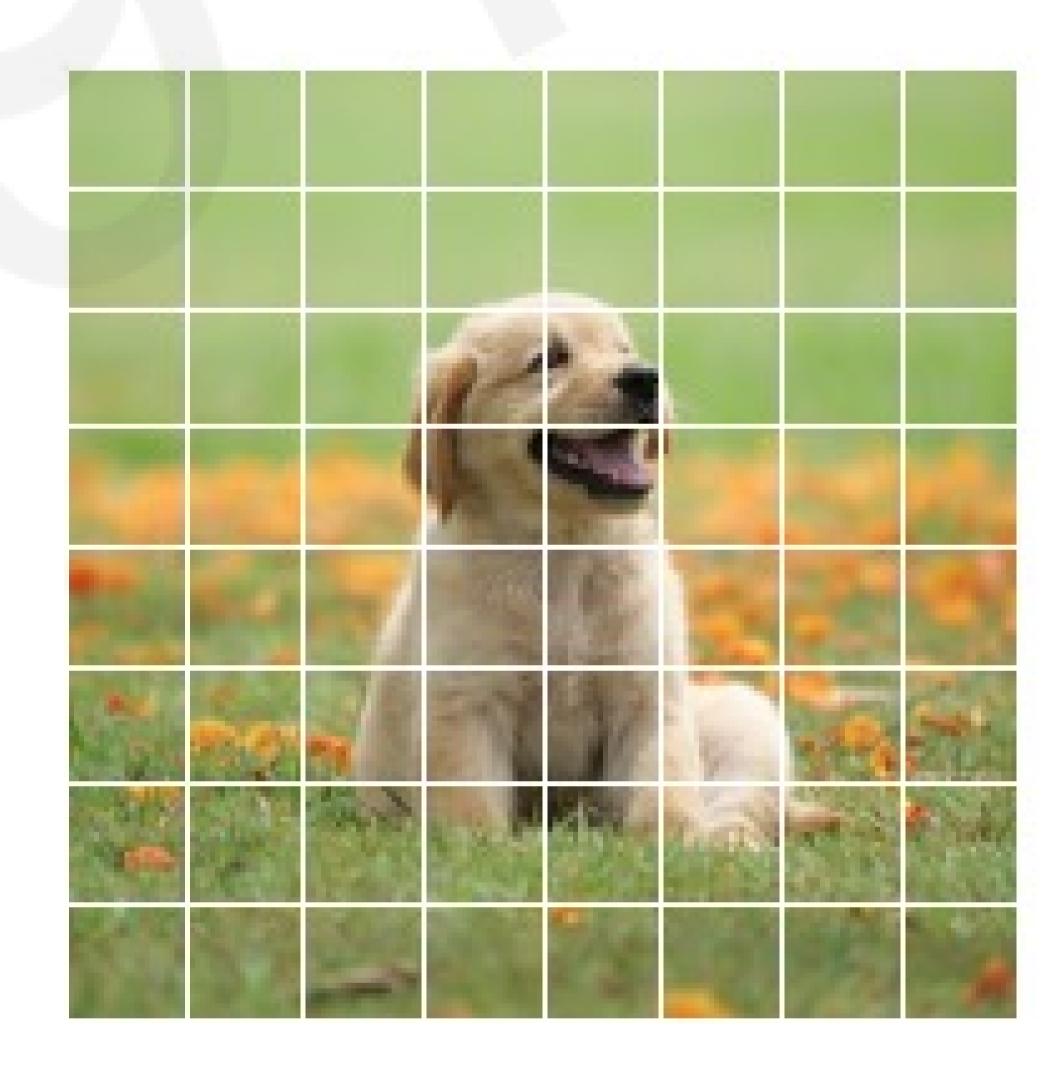
Biological Sequences



AlphaFold2

Jumper et al., Nature 2021

Computer Vision

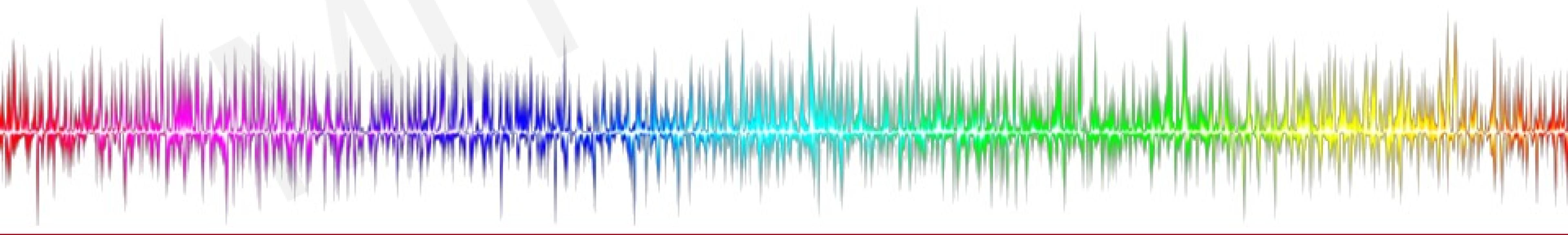


Vision Transformers

Dosovitskiy et al., ICLR 2020

Deep Learning for Sequence Modeling: Summary

- 1. RNNs are well suited for sequence modeling tasks
- 2. Model sequences via a recurrence relation
- 3. Training RNNs with backpropagation through time
- 4. Models for music generation, classification, machine translation, and more
- 5. Self-attention to model sequences without recurrence
- 6. Self-attention is the basis for many large language models stay tuned!



6.S191: Introduction to Deep Learning

Lab 1: Introduction to TensorFlow and Music Generation with RNNs

Link to download labs: http://introtodeeplearning.com#schedule

- I. Open the lab in Google Colab
- 2. Start executing code blocks and filling in the #TODOs
 - 3. Need help? Find a TA/instructor!

6.S 191: Introduction to Deep Learning

Kickoff Reception at One Kendall Square!

mitdeeplearningkickoffcelebration.splashthat.com

Join us at 6:30pm for a special kickoff reception at I Kendall Square!

Food and drinks will be provided!

Special thanks to John Werner and Link Ventures for hosting.